精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP中点,将△PAD沿AD折起,使得PD⊥面ABCD;

(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中点.求三棱锥A﹣PEB的体积.

【答案】(Ⅰ)证明:∵PD⊥底面ABCD,∴PD⊥AD.

又由于CP∥AB,CP⊥CB,AB=BC

∴正方形ABCD,∴AD⊥CD,

又PD∩CD=D,故AD⊥底面PCD,

∵AD平面PAD,∴PAD⊥底面PCD

(Ⅱ)解:∵AD∥BC,BC平面PBC,AD平面PBC,∴AD∥平面PBC

∴点A到平面PBC的距离即为点D到平面PBC的距离

又∵PD=DC,E是PC的中点

∴PC⊥DE

由(Ⅰ)知有AD⊥底面PCD,∴有AD⊥DE.

由题意得AD∥BC,故BC⊥DE.

又∵PC∩BC=C

∴DE⊥面PBC.

又∵AD⊥底面PCD,∴AD⊥CP,

∵AD∥BC,∴AD⊥BC


【解析】(1)证明面面垂直找线面垂直,证明线面垂直找线线垂直。即PD⊥AD,AD⊥CD证明结论。
(2)证明点A到平面PBC的距离即为点D到平面PBC的距离,利用等体积转化法即可求出结论。
【考点精析】解答此题的关键在于理解平面与平面垂直的判定的相关知识,掌握一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=
②f(n)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求不等式 的解集;
(2)若关于 的不等式 的解集为 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:

男公务员

女公务员

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某高校大学5000名新生的视力情况,随机地抽查了该校100名进校新生的视力情况,得到其频率分布直方图如右图,若规定视力低于5.0的学生属[于近视学生,则估计该校新生中不是近视的人数约为(  )

A.300人
B.400人
C.600人
D.1000人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a3=3,S7=28,在等比数列{bn}中,b3=4,b4=8.
(1)求an及bn
(2)设数列{anbn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在梯形ABCD中,∠ADC= ,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,点E在BP上,且EB=2PE.
(1)求证:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin(x+ )﹣ cos(x+ ),若存在x1 , x2 , x3 , …,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+… ,则n的最小值为(
A.6
B.10
C.8
D.12

查看答案和解析>>

同步练习册答案