【题目】为椭圆上的点,是两焦点,若,则的面积是( )
A. B. C. D.
【答案】A
【解析】
由题意得,在△F1PF2中,∠F1PF2=60°,|F1P|+|PF2|==,|F1F2|=4,利用余弦定理可求得|F1P||PF2|的值,从而可求得△PF1F2的面积.
∵椭圆,∴=,b=2,c=2.又∵P为椭圆上一点,∠F1PF2=60°,
且F1、F2为左右焦点,由椭圆的定义得|F1P|+|PF2|==,|F1F2|=4,
∴|F1F2|2=|PF1|+|PF2|-2|PF1||PF2|cos60°
=(|PF1|+|PF2|)2﹣2|PF1||PF2|﹣2|F1P||PF2|cos60°
=32﹣3|F1P||PF2|
=16
∴|F1P||PF2|=,∴=|PF1||PF2|sin60°=××=.
故选:A.
科目:高中数学 来源: 题型:
【题目】市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占领了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
市场份额 | 11 | 163 | 16 | 15 | 20 | 21 |
请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额.
如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元;
当时,企业平均每天收入约为400万元;
当时,企业平均每天收入约为700万元.
①设该企业在六月份每天收入为,求的数学期望;
②如果将频率视为概率,求该企业在未来连续三天总收入不低于1200万元的概率.
附:回归直线的方程是,其中
, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合为下述条件的函数的集合:①定义域为;②对任意实数,都有.
(1)判断函数是否为中元素,并说明理由;
(2)若函数是奇函数,证明:;
(3)设和都是中的元素,求证:也是中的元素,并举例说明,不一定是中的元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线 上.
(1)若圆分别与轴、轴交于点(不同于原点),求证:的面积为定值;
(2)设直线与圆交于不同的两点,且,求圆的方程;
(3)点在直线上,过点引圆(题(2))的两条切线,切点为,求证:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】无穷数列 ,若存在正整数,使得该数列由个互不相同的实数组成,且对于任意的正整数,中至少有一个等于,则称数列具有性质.集合.
(1)若,,判断数列是否具有性质;
(2)数列具有性质,且,求的值;
(3)数列具有性质,对于中的任意元素,为第个满足的项,记 ,证明:“数列具有性质”的充要条件为“数列是周期为的周期数列,且每个周期均包含个不同实数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数(、为常数且),满足条件,且方程有等根.
(1)若,恒成立,求实数的取值范围;
(2)是否存在实数,,使当定义域为时,值域为?如果存在,求出,的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由于往届高三年级数学学科的学习方式大都是“刷题一讲题一再刷题”的模式,效果不理想,某市一中的数学课堂教改采用了“记题型一刷题一检测效果”的模式,并记录了某学生的记题型时间(单位:)与检测效果的数据如下表所示.
记题型时间 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
检测效果 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)据统计表明,与之间具有线性相关关系,请用相关系数加以说明(若,则认为与有很强的线性相关关系,否则认为没有很强的线性相关关系);
(2)建立关于的回归方程,并预测该学生记题型的检测效果;
(3)在该学生检测效果不低于3.6的数据中任取2个,求检测效果均高于4.4的概率.
参考公式:回归直线中斜率和截距的最小二乘估计分别为,
,相关系数
参考数据:,,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com