精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1,动直线l:y=x+m.问:
(1)m为何值时,l与C相交;
(2)若l与C相交于A,B两点,且OA⊥OB,求l的方程.

分析 (1)联立方程组,利用的判别式能求出直线与椭圆相交时m的值.
(2)设A(x1,y1),B(x2,y2),由OA⊥OB,得x1x2+y1y2=0,由此能求出l的方程.

解答 解:(1)由$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}=2}\\{y=x+m}\end{array}\right.$,消去y得3x2+4mx+2m2-2=0,
由△=(4m)2-4×3×(2m2-2)>0,解得-$\sqrt{3}<m<\sqrt{3}$,
∴当-$\sqrt{3}<m<\sqrt{3}$时,直线与椭圆相交.
(2)设A(x1,y1),B(x2,y2),
∵OA⊥OB,∴x1x2+y1y2=0,
∴x1x2+(x1+m)(x2+m)=0,
∴$2{x}_{1}{x}_{2}+m({x}_{1}+{x}_{2})+{m}^{2}=0$,(*)
由(1)可知$\left\{\begin{array}{l}{-\sqrt{3}<m<\sqrt{3}}\\{{x}_{1}+{x}_{2}=-\frac{4m}{3}}\\{{x}_{1}{x}_{2}=\frac{2}{3}({m}^{2}-1)}\end{array}\right.$,代入(*)式,得$m=±\frac{2\sqrt{3}}{3}$,
∴l的方程为:y=x±$\frac{2\sqrt{3}}{3}$.

点评 本题考查直线与椭圆相交时实数值的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理和椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.以(2,6)为圆心,1为半径的圆的标准方程为(x-2)2+(y-6)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在二项式${(\root{3}{x}-\frac{1}{x})^8}$的展开式中,常数项的值为28.(结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列命题:
①若{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}可以作为空间的一个基底,$\overrightarrow{d}$与$\overrightarrow{c}$共线,$\overrightarrow{d}$≠0,则{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{d}$}也可作为空间的一个基底;
②已知向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$,$\overrightarrow{b}$与任何向量都不能构成空间的一个基底;
③A,B,M,N是空间四点,若$\overrightarrow{BA}$,$\overrightarrow{BM}$,$\overrightarrow{BN}$不能构成空间的一个基底,那么A,B,M,N共面;
④已知向量组{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}是空间的一个基底,若$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow{c}$,则{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{m}$}也是空间的一个基底.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=ax2-(a+1)x+a.
(1)若a=2,解关于x的不等式f(x)>1;
(2)若对任意x>0,不等式f(x))>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8].
(1)若f(x)的定义域为R,求a的取值范围;
(2)若f(x)的值域为R,求a的取值范围;
(3)f(x)在[-1,+∞]上有意义,求a的取值范围;
(4)f(x)在[a,+∞]上为减函数,求a的取值范围;
(5)a=$\frac{3}{4}$时,y=f[sin(2x-$\frac{π}{3}$)],x$∈[\frac{π}{12},\frac{π}{2}]$的值域.
(6)关于x的方程f(x)=-1+log${\;}_{\frac{1}{2}}$(x+3)在[1,3]上有且只有一个解,求a的取值;
(7)f(x)≤-1在x∈[2,3]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.无穷等比数列{an}(n∈N*)的首项a1=1,公比q=$\frac{1}{3}$,则前n项和Sn的极限$\underset{lim}{n→∞}$Sn=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}sinπx(0≤x≤1)\\{log_{2018}}x(x>1)\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(2,2018)B.(2,2019)C.(3,2018)D.(3,2019)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在焦点在x轴椭圆中截得的最大矩形的面积范围是[3b2,4b2],则椭圆离心率的范围是(  )
A.$[{\frac{{\sqrt{5}}}{3},\frac{{\sqrt{3}}}{2}}]$B.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}}]$C.$[{\frac{1}{2},\frac{{\sqrt{3}}}{2}}]$D.$[{\frac{{\sqrt{2}}}{4},\frac{{\sqrt{3}}}{3}}]$

查看答案和解析>>

同步练习册答案