精英家教网 > 高中数学 > 题目详情
如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角余弦值的大小;
(Ⅲ)求点到平面的距离.
(Ⅰ)略;(Ⅱ);(Ⅲ)

试题分析:(Ⅰ)中主要利用线线垂直可证线面垂直;(Ⅱ)中通过作平行线转化到三角形内解角;当然也可建系利用空间向量来解;(Ⅲ)中利用等体积法可求,亦可用空间向量来解.
试题解析:(Ⅰ)证明:连结OC


中,由已知可得
   
          平面      4分
(Ⅱ)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知ME∥AB,OE∥DC
直线OE与EM所成的锐角就是异面直线AB与CD所成的角
中,

是直角斜边AC上的中线,
       8分
(Ⅲ)解:设点E到平面ACD的距离为确规定


中,



点E到平面ACD的距离为      12分
方法二:(Ⅰ)同方法一.
(Ⅱ)解:以O为原点,如图建立空间直角坐标系,则


异面直线AB与CD所成角的余弦值为
(Ⅲ)解:设平面ACD的法向量为


是平面ACD的一个法向量,   又
点E到平面ACD的距离 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)求所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AC是圆O的直径,点B在圆O上,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,

(1)证明
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,平面底面中点,M是棱PC上的点,

(1)若点M是棱PC的中点,求证:平面
(2)求证:平面底面
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,且,E是PC的中点.

(1)证明:;  
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直三棱柱中,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中:
(1)、平行于同一直线的两个平面平行;
(2)、平行于同一平面的两个平面平行;
(3)、垂直于同一直线的两直线平行;
(4)、垂直于同一平面的两直线平行.
其中所有正确的命题有_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面,使成立的一个充分条件是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案