精英家教网 > 高中数学 > 题目详情
1.若x,y满足(x-1)2+(y+2)2=4,则2x+y的最大值和最小值分别为2$\sqrt{5}$和-2$\sqrt{5}$.x2+y2的最大值和最小值分别为9+4$\sqrt{5}$和9-4$\sqrt{5}$.

分析 由题意方程求得圆的参数方程,然后利用三角函数最值的求法得2x+y的最大值和最小值.x2+y2表示(x,y)到原点的距离的平方,即可求出x2+y2的最大值和最小值.

解答 解:设x=1+2cosα,y=-2+2sinα,则
2x+y=2+4cosα-2+2sinα=4cosα+2sinα=2$\sqrt{5}$sin(α+θ),
∴2x+y的最大值和最小值分别为2$\sqrt{5}$,-2$\sqrt{5}$;
x2+y2表示(x,y)到原点的距离的平方,
∵圆心(1,-2)到原点的距离为$\sqrt{5}$,
∴x2+y2的最大值为($\sqrt{5}$+2)2=9+4$\sqrt{5}$,最小值为($\sqrt{5}$-2)2=9-4$\sqrt{5}$,
故答案为:2$\sqrt{5}$,-2$\sqrt{5}$;9+4$\sqrt{5}$,9-4$\sqrt{5}$.

点评 本题考查圆的简单几何性,考查了椭圆参数方程的应用,训练了三角函数的最值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,在复平面内,复数z1,z2对应的向量分别是$\overrightarrow{OA}$,$\overrightarrow{OB}$,设复数$z=\frac{z_1}{z_2}$,则z的共轭复数为(  )
A.$\frac{1}{2}-\frac{3}{2}i$B.$\frac{1}{2}+\frac{3}{2}i$C.1-3iD.1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C过点O(0,0)和点A(-2,2),且圆心C在x轴上.
(1)求圆C的方程;
(2)设定点M的坐标为(-1,0);
(i)若过点M的任意直线l与圆C相交于P、Q两点,求$\overrightarrow{CP}$•$\overrightarrow{CQ}$的取值范围;
(ii)若点R是圆C上的任意一点,问:在x轴上是否存在定点N使得|RN|=2|RM|,若存在,求出点N的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若定义在R上的函数f(x)满足:f(x+1)=2f(x),f(1)=3,则f(3)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(2x+1)=5x-4,f(m)=5,则m=$\frac{23}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+(a-4)x+3-a.
(1)若方程f(x)-x=0有两个不等的实数根x1,x2,求(1-x1)(1-x2)的值;
(2)若存在实数x0∈[0,2],使得|f(x0)|>-2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=x3+ax2+4a为奇函数,则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求过点(0,-1)、(2、3),圆心在直线y=-x+1上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2x-3,求:
(1)f(0),f(2),f(3);
(2)f[f(x)];
(3)若x∈{0,1,2,3},求函数的值域.

查看答案和解析>>

同步练习册答案