精英家教网 > 高中数学 > 题目详情
4.函数y=f(x)的定义域为[-1,1],则y=f(lnx)的定义域为[$\frac{1}{e},e$].

分析 由y=f(x)的定义域为[-1,1],直接由-1≤lnx≤1求得x的范围得y=f(lnx)的定义域.

解答 解:∵y=f(x)的定义域为[-1,1],
∴由-1≤lnx≤1,得$\frac{1}{e}≤x≤e$.
∴y=f(lnx)的定义域为[$\frac{1}{e},e$].
故答案为:[$\frac{1}{e},e$].

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数y=$\frac{1}{{|{x-2}|}}+\sqrt{6-x-{x^2}}$的定义域为[-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|(x-2)[x-(3a+1)]<0},集合B={x|2a<x<a2+1}.
(1)当a=2时,求A∪B;
(2)当a>$\frac{1}{3}$时,若元素x∈A是x∈B的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合M={x|x≥1},N={x|(x+1)(x-3)≥0},则∁U(M∩N)=(  )
A.{x|x<3}B.{x|x≤3}C.{x|-1<x≤3}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=2cosx(sinx+cosx),则下列说法正确的是(  )
A.f(x)的最小正周期为2π
B.f(x)的图象关于点$(-\frac{π}{8},0)$对称
C.f(x)的图象关于直线$x=\frac{π}{8}$对称
D.f(x)的图象向左平移$\frac{π}{4}$个单位长度后得到一个偶函数图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数函数y=|x-2|的单调增区间是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.现需要对某旅游景点进一步改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x万元之间满足y=$\frac{51}{50}$x-ax2-ln$\frac{x}{10}$,且X∈(1,t].且当X=10时,y=9.2
(Ⅰ)求y=f(x)的解析式
(Ⅱ)求旅游增加值y取得最大值时对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若指数函数f(x)=ax在[1,2]上的最大值与最小值的差为$\frac{a}{2}$,则a=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{2}$或$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点点分别为F1,F2,点P是C上的点,PF1⊥F1F2,∠PF2F1=45°,则C的离心率为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}-1$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案