分析 (1)由已知得f′(x)=6x2+6ax+3b,函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值,可得$\left\{\begin{array}{l}{6+6a+3b=0}\\{24+12a+3b=0}\end{array}\right.$,由此能求出a,b的值.
(2)确定切线的斜率,切点坐标,即可求曲线f(x)在x=0处的切线方程.
解答 解:(1)∵函数f(x)=2x3+3ax2+3bx+8c,
∴f′(x)=6x2+6ax+3b,
∵函数f(x)在x=1及x=2取得极值,∴f′(1)=0,f′(2)=0.
即$\left\{\begin{array}{l}{6+6a+3b=0}\\{24+12a+3b=0}\end{array}\right.$,
解得a=-3,b=4;
(2)由(1)得f(x)=2x3-9x2+12x+8,f′(x)=6x2-18x+12,
∴f(0)=0,f′(0)=12.∴切线的斜率k=12.切点为(0,8)
由直线方程的点斜式得切线方程为:y-8=12x,即12x-y+8=0.
点评 本题考查导数知识的运用,考查导数的几何意义,极值,正确求导是关键.
科目:高中数学 来源: 题型:选择题
A. | 18 | B. | 20 | C. | 22 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 10 | B. | -10 | C. | 2 | D. | -26 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com