精英家教网 > 高中数学 > 题目详情

【题目】某厂生产的某种零件的尺寸大致服从正态分布,且规定尺寸为次品,其余的为正品.生产线上的打包机自动把每5件零件打包成1箱,然后进入销售环节,若每销售一件正品可获利50元,每销售一件次品亏损100元.现从生产线生产的零件中抽样20箱做质量分析,作出的频率分布直方图如下:

1)估计生产线生产的零件的次品率及零件的平均尺寸;

2)从生产线上随机取一箱零件,求这箱零件销售后的期望利润及不亏损的概率.

【答案】10.2098.82

【解析】

1)求出的值,即可得到次品的尺寸范围,根据频率分布图求出次品率,并求出各组的频率,按照平均数公式即可求解;

2)设生产线上的一箱零件(5件)中的正品数为,则,将利润表示为的函数,由二项分布的期望公式和期望的性质,求出利润的期望;要使销售不亏损,5件产品中至少要有4件正品,根据独立重复试验的概率公式,即可求解.

1)次品的尺寸范围

,即

故生产线生产的产品次品率为:

生产线生产的产品平均尺寸为:

2)设生产线上的一箱零件(5件)中的正品数为

正品率为,故

设销售生产线上的一箱零件获利为元,

(元)

设事件:销售生产线上的一箱零件不亏损,则

答:生产线生产的零件的次品率为0.2,零件的平均尺寸为98.8

这箱零件销售后的期望利润为100元,不亏损的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式;

2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量








频数








天的各需求量的频率作为各需求量发生的概率.

若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列, 数学期望及方差;

若花店一天购进枝或枝玫瑰花,你认为应购进枝还是枝?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD和矩形ABEF中,,矩形ABEF可沿AB任意翻折.

1)求证:当点FAD不共线时,线段MN总平行于平面ADF.

2)“不管怎样翻折矩形ABEF,线段MN总与线段FD平行”这个结论正确吗?如果正确,请证明;如果不正确,请说明能否改变个别已知条件使上述结论成立,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】13分){an}是公比为正数的等比数列a1=2a3=a2+4

)求{an}的通项公式;

)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面上一点,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设实数满足

(i)且不全为0;

(ii)

(iii)若,则.

若所有形如的数均不为2014的倍数,则称集合为“好集”.求好集所含元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体的各棱长均为2,分别为棱的中点,以为圆心、1为半径,分别在面、面内作弧,并将两弧各分成五等份,分点顺次为以及.一只甲虫欲从点出发,沿四面体表面爬行至点,则其爬行的最短距离为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内切在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设.问:对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为

1)求过点且与圆相切的直线的方程;

2)直线过点,且与圆交于两点,若,求直线的方程;

查看答案和解析>>

同步练习册答案