精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为

【答案】17π
【解析】解:如图所示
连接AC,BD相交于点O1 . 取SC的中点,连接OO1
则OO1∥SA.
∵SA⊥底面ABCD,
∴OO1⊥底面ABCD.
可得点O是四棱锥S﹣ABCD外接球的球心.
因此SC是外接球的直径.
∵SC2=SA2+AC2=9+8=17,∴4R2=17,
∴四棱锥P﹣ABCD外接球的表面积为4πR2=π17=17π.
所以答案是:17π

【考点精析】关于本题考查的球内接多面体,需要了解球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[ , 2]时,函数f(x)=x+ 恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于MN两点,且|MN|=8.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设直线l为抛物线C的切线,且lMNPl上一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组: ,绘制成如图所示的频率分布直方图.

1)求直方图中的值;

2)求续驶里程在的车辆数;

3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义2×2矩阵 =a1a4﹣a2a3 , 若f(x)= ,则f(x)的图象向右平移 个单位得到函数g(x),则函数g(x)解析式为( )
A.g(x)=﹣2cos2x
B.g(x)=﹣2sin2x
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.
(1)求a、b的值;
(2)求f(x)的单调区间;
(3)求f(x)在[0,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2 ,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.

(1)求证:AE∥平面BFD;
(2)求三棱锥A﹣DBE的体积;
(3)求二面角D﹣BE﹣A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,顶点为,且

(1)求椭圆的方程;

(2)是椭圆上除顶点外的任意点,直线轴于点,直线于点.设的斜率为 的斜率为,试问是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案