【题目】在四棱锥S﹣ABCD中,SA⊥面ABCD,若四边形ABCD为边长为2的正方形,SA=3,则此四棱锥外接球的表面积为 .
科目:高中数学 来源: 题型:
【题目】已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[ , 2]时,函数f(x)=x+> 恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组: ,绘制成如图所示的频率分布直方图.
(1)求直方图中的值;
(2)求续驶里程在的车辆数;
(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义2×2矩阵 =a1a4﹣a2a3 , 若f(x)= ,则f(x)的图象向右平移 个单位得到函数g(x),则函数g(x)解析式为( )
A.g(x)=﹣2cos2x
B.g(x)=﹣2sin2x
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.
(1)求a、b的值;
(2)求f(x)的单调区间;
(3)求f(x)在[0,4]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2 ,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥A﹣DBE的体积;
(3)求二面角D﹣BE﹣A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,顶点为,且.
(1)求椭圆的方程;
(2)是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为, 的斜率为,试问是否为定值?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com