精英家教网 > 高中数学 > 题目详情

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1? =z2?
D.若|z1|=|z2|,则z12=z22

【答案】D
【解析】解:对(A),若|z1﹣z2|=0,则z1﹣z2=0,z1=z2 , 所以 为真;
对(B)若 ,则z1和z2互为共轭复数,所以 为真;
对(C)设z1=a1+b1i,z2=a2+b2i,若|z1|=|z2|,则
,所以 为真;
对(D)若z1=1,z2=i,则|z1|=|z2|为真,而 ,所以 为假.
故选D.
题目给出的是两个复数及其模的关系,两个复数与它们共轭复数的关系,要判断每一个命题的真假,只要依据课本基本概念逐一核对即可得到正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)设,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物系统是一种具有交互功能的商业信息系统,它在网络上建立一个虚拟的购物商场,使购物过程变得轻松、快捷、方便.网上购物系统分为前台管理和后台管理,前台管理包括浏览商品、查询商品、订购商品、用户注册等功能;后台管理包括公告管理、商品管理、订单管理、投诉管理和用户管理等模块.根据这些要求画出该系统的结构图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求圆C的直角坐标方程(化为标准方程)和直线l的极坐标方程;
(2)若直线l与圆C只有一个公共点,且a<1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:∥平面EFGH;

(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D是直角△ABC斜边BC上一点,AC= DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产一种品牌服装的年固定成本为10万元,且每生产1万件,需要另投入1.9万元.R(x)(单位:万元)为销售收入,根据市场调查知R(x)= 其中x(单位:万件)是年产量.

(1)写出年利润W(单位:万元)关于年产量x的函数解析式.

(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

同步练习册答案