精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.

【答案】
(1)解:f′(x)= ,f(x)的定义域是(0,+∞),

x∈(0,e)时,f′(x)>0,f(x)单调递增;

x∈(e,+∞)时,f'(x)<0,f(x)单调递减.

当x=e时,f(x)取极大值为 ,无极小值


(2)解:要证f(e+x)>f(e﹣x),即证:

只需证明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).

设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),

∴F(x)>F(0)=0,

故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),

即f(e+x)>f(e﹣x)


(3)解:证明:不妨设x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,

由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),

又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,

∴2e﹣x1<x2,即x1+x2>2e,

,∴f'(x0)<0


【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可;(2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根据函数的单调性证明即可.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的极值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn
(1)求p2的值;
(2)证明:pn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把圆分成个扇形,设用4种颜色给这些扇形染色,每个扇形恰染一种颜色,并且要求相邻扇形的颜色互不相同,设共有种方法.

(1)写出的值

(2)猜想 ,并用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一款6吋大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

45

75

90

60

30

(Ⅰ)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校举行“两城同创”的知识竞赛答题,高一年级共有1200名学生参加了这次竞赛.为了解竞赛成绩情况,从中抽取了100名学生的成绩进行统计.其中成绩分组区间为,其频率分布直方图如图所示,请你解答下列问题:

(1)求的值;

(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人;

(3)根据频率分布直方图,估计这次平均分(用组中值代替各组数据的平均值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,圆C

(1)过点向圆C引切线l,求切线l的方程;

(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;

(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一款6吋大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

45

75

90

60

30

(Ⅰ)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是边长为2的菱形,平面

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是

A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

查看答案和解析>>

同步练习册答案