(本小题满分13分)
已知:如图,长方体中,、分别是棱,上的点,,.
(1) 求异面直线与所成角的余弦值;
(2) 证明平面;
(3) 求二面角的正弦值.
(1)
(2)略
(3)
【解析】解:
法一:
如图所示,以点A为坐标原点,建立空间直角坐标系,
设,
依题意得,,,
(1)易得,,
于是
所以异面直线与所成角的余弦值为
(2)已知,
,
于是·=0,·=0.
因此,,,又
所以平面
(3)设平面的法向量,则,即
不妨令X=1,可得。
由(2)可知,为平面的一个法向量。
于是,从而,
所以二面角的正弦值为
法二:
(1)设AB=1,可得AD=2,AA1=4,CF=1.CE=
连接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,
由,可知EF∥BC1.
故是异面直线EF与A1D所成的角,
易知BM=CM=,
所以 ,
所以异面直线FE与A1D所成角的余弦值为
(2)连接AC,设AC与DE交点N 因为,
所以,从而,
又由于,所以,
故AC⊥DE,又因为CC1⊥DE且,所以DE⊥平面ACF,从而AF⊥DE.
连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,
所以AF⊥A1D因为,所以AF⊥平面A1ED.
(3)连接A1N.FN,由(2)可知DE⊥平面ACF,
又NF平面ACF, A1N平面ACF,所以DE⊥NF,DE⊥A1N,
故为二面角A1-ED-F的平面角.
易知,所以,
又所以,
在
,
连接A1C1,A1F 在
。所以
所以二面角A1-DE-F正弦值为.
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com