精英家教网 > 高中数学 > 题目详情
已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.
【答案】分析:(1)设出圆的一般式方程,利用圆上的三点,即可求圆C的方程;
(2)通过过点P(3,6)且被圆C截得弦长为4的直线的斜率不存在推出方程判断是否满足题意;直线的斜率存在是利用圆心距与半径的关系,求出直线的斜率,即可解得直线的方程.
解答:解:(1)设圆的方程为x2+y2+Dx+Ey+F=0.
圆C经过三个点O(0,0)A(1,3)B(4,0),
所以
解得D=-4,E=-2,F=0,
所以圆C的方程x2+y2-4x-2y=0.
(2)①过点P(3,6)且被圆C截得弦长为4的直线的斜率不存在,此时x=3,满足题意.
②当过点P(3,6)且被圆C截得弦长为4的直线的斜率存在时设为k,
直线方程为y-6=k(x-3).
,解得k=,所求直线方程为:12x-5y-6=0.
故所求直线方程为:x=3或12x-5y-6=0.
点评:本题考查圆的一般式方程的求法,直线与圆的位置关系的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,2)和B(-3,3),且圆心C在直线l:x+y+5=0上.
(1)求线段AB的垂直平分线方程;
(2)求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心在直线l:x+2y-3=0上.
(1)求圆C的标准方程;
(2)若圆C的切线在x轴,y轴上的截距相等,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x-3y=0上.
(1)求圆C的方程;
(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为
14
,求实数m的值.
(3)已知点M(-4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(4,1)和B(0,-3),且圆心C在直线l:2x-y-5=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若过点P(4,-8)直线l与圆C交点M、N两点,且|MN|=4,求直线l的方程.

查看答案和解析>>

同步练习册答案