ÒÑÖªÊýÁÐ{an}ÓÐa1£½a£¬a2£½p(³£Êýp£¾0)£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬Sn£½a1£«a2£«¡­£«an£¬²¢ÓÐSnÂú×㣮

(1)ÇóaµÄÖµ£»

(2)ÊÔÈ·¶¨ÊýÁÐ{an}ÊÇ·ñÊǵȲîÊýÁУ¬ÈôÊÇ£¬Çó³öÆäͨÏʽ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»

(3)¶ÔÓÚÊýÁÐ{bn}£¬¼ÙÈç´æÔÚÒ»¸ö³£ÊýbʹµÃ¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn£¼b£¬ÇÒ£¬Ôò³ÆbΪÊýÁÐ{bn}µÄ¡°ÉϽ¥½üÖµ¡±£¬ÁÇóÊýÁÐ{p1£«p2£«¡­£«pn£­2n}µÄ¡°ÉϽ¥½üÖµ¡±£®

´ð°¸£º
½âÎö£º

¡¡¡¡½â£º(1)£¬¼´¡¡2·Ö

¡¡¡¡(2)¡¡4·Ö

¡¡¡¡

¡¡¡¡¡àÊÇÒ»¸öÒÔΪÊ×ÏΪ¹«²îµÄµÈ²îÊýÁУ®¡¡6·Ö

¡¡¡¡(3)£¬¡¡7·Ö

¡¡¡¡¡¡9·Ö

¡¡¡¡¡¡12·Ö

¡¡¡¡¡ß£¬¡àÊýÁеġ°ÉϽ¥½üÖµ¡±Îª£®


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÀÖɽ¶þÄ££©ÒÑÖªÊýÁÐ{an}ÓÐa1=a£¬a2=p£¨³£Êýp£¾0£©£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬Sn=a1+a2+¡­+an£¬²¢ÓÐSnÂú×ãSn=
n(an-a1)
2
£®
£¨I£©ÊÔÅжÏÊýÁÐ{an}ÊÇ·ñÊǵȲîÊýÁУ¬ÈôÊÇ£¬ÇóÆäͨÏʽ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
£¨II£©ÁîPn=
Sn+2
Sn+1
+
Sn+1
Sn+2
£¬TnÊÇÊýÁÐ{Pn}
µÄÇ°nÏîºÍ£¬ÇóÖ¤£ºTn-2n£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãa 1=
2
5
£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐ
an
an+1
=
4an+2
an+1+2
£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{
1
an
}ΪµÈ²îÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Áîbn=an•an+1£¬Tn=b1+b2+b3+¡­+bn£¬ÇóÖ¤£ºTn£¼
4
15
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãa 1=
2
5
£¬ÇÒ¶ÔÈÎÒân¡ÊN+£¬¶¼ÓÐ
an
an+1
=
4an+2
an+1+2
£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Áîbn=an•an+1£¬Tn=b1+b2+b3+¡­+bn£¬ÇóÖ¤£ºTn£¼
4
15
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2005•ÉϺ£Ä£Ä⣩ÒÑÖªÊýÁÐ{an}ÓÐa1?a£¬a2?p £¨³£Êýp£¾0£©£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬Sn?a1a2¡­an£¬²¢ÓÐSnÂú×ãSn=
n(an-a1)
2
£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÊÔÈ·¶¨ÊýÁÐ{an}ÊÇ·ñÊǵȲîÊýÁУ¬ÈôÊÇ£¬Çó³öÆäͨÏʽ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶ÔÓÚÊýÁÐ{bn}£¬¼ÙÈç´æÔÚÒ»¸ö³£ÊýbʹµÃ¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn£¼b£¬ÇÒ
lim
n¡ú¡Þ
bn=b
£¬Ôò³ÆbΪÊýÁÐ{bn}µÄ¡°ÉϽ¥½øÖµ¡±£¬ÇóÊýÁÐ
an-1
an+1
µÄ¡°ÉϽ¥½øÖµ¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÖØÇìÊÐÎ÷ÄÏʦ´ó¸½ÖÐ2009¡ª2010ѧÄê¶ÈÏÂÆÚÆÚÄ©¿¼ÊԸ߶þÊýѧÊÔÌ⣨Àí¿Æ£© ÌâÐÍ£º½â´ðÌâ


20£® (±¾Ð¡ÌâÂú·Ö13·Ö)
ÒÑÖªÊýÁÐ{an}ÓÐa1 = a£¬a2 = p£¨³£Êýp > 0£©£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬£¬ÇÒ£®
(1)ÇóaµÄÖµ£»
(2)ÊÔÈ·¶¨ÊýÁÐ{an}ÊÇ·ñÊǵȲîÊýÁУ¬ÈôÊÇ£¬Çó³öÆäͨÏʽ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£»
(3)¶ÔÓÚÊýÁÐ{bn}£¬¼ÙÈç´æÔÚÒ»¸ö³£Êýb£¬Ê¹µÃ¶ÔÈÎÒâµÄÕýÕûÊýn¶¼ÓÐbn< b£¬ÇÒ£¬Ôò³ÆbΪÊýÁÐ{bn}µÄ¡°ÉϽ¥½üÖµ¡±£¬ÁÇóÊýÁеġ°ÉϽ¥½üÖµ¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸