精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
,离心率为
1
2
,F1,F2分别为其左右焦点,椭圆上点P到F1与F2距离之和为4,
(1)求椭圆C1方程.
(2)若一动圆过F2且与直线x=-1相切,求动圆圆心轨迹C方程.
(3)在(2)轨迹C上有两点M,N,椭圆C1上有两点P,Q,满足
MF2
NF2
共线,
PF2
QF2
共线,且
PF2
MF2
=0,求四边形PMQN面积最小值.
分析:(1)由题设知
c
a
=
1
2
2a=4
,由此能求出椭圆C1方程.
(2)设动圆圆心C(x,y),由动圆过
x2
4
+
y2
3
=1
的右焦点F2(1,0),且与直线x=-1相切,知
(x-1)2+y2
=|x+1|
,由此能求出动圆圆心轨迹C方程.
(3)当直线斜率不存在时,|MN|=4,SPMQN=8;当直线斜率不存在时,设直线MN的方程为:y=k(x-1),直线PQ的方程为y=
1
k
(x-1),设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),由
y=k(x-1)
y2=4x
,得k2x2-(2k2+4)x+k2=0,由抛物线定义可知:|MN|=|MF2|+|NF2|=4+
4
k2
,由此能求出四边形PMQN面积的最小值.
解答:解:(1)∵椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
,离心率为
1
2

F1,F2分别为其左右焦点,椭圆上点P到F1与F2距离之和为4,
c
a
=
1
2
2a=4
,解得a=2,c=1,b2=a2-c2=3,
∴椭圆C1方程为
x2
4
+
y2
3
=1

(2)设动圆圆心C(x,y),
∵动圆过
x2
4
+
y2
3
=1
的右焦点F2(1,0),且与直线x=-1相切,
(x-1)2+y2
=|x+1|

整理,得动圆圆心轨迹C方程为y2=4x.
(3)当直线斜率不存在时,|MN|=4,
此时PQ的长即为椭圆长轴长,|PQ|=4,
从而SPMQN=
1
2
|MN|•|PQ|=
1
2
×4×4=8,
设直线MN的斜率为k,直线MN的方程为:y=k(x-1),
直线PQ的方程为y=
1
k
(x-1),
设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
y=k(x-1)
y2=4x
,消去y可得k2x2-(2k2+4)x+k2=0,
由抛物线定义可知:
|MN|=|MF2|+|NF2|=x1+1+x2+1
=
2k2+4
k2
+2=4+
4
k2

y=
1
k
(x-1)
x2
4
+
y2
3
=1
,消去y得(3k2+4)x2-8x+4-12k2=0,
从而|PQ|=
1+(-
1
k
)2
|x3-x4|=
12(1+k2)
3k2+4

∴SPMQN=
1
2
|MN|•|PQ|=
1
2
|MN|•|PQ|
=
1
2
(4+
4
k2
)•
12(1+k2)
3k2+4

=24•
(1+k2)2
3k4+4k2

令1+k2=t,∵k>0,则t>1,
则SPMQN=
24t2
3(t-1)2+4(t-1)

=
24t2
3t2-2t-1

=
24
3-
2
t
-
1
t2

因为3-
2
t
-
1
t2
=4-(1+
1
t
2∈(0,3),
所以SPMQN=
24
3-
2
t
-
1
t2
>8,
所以四边形PMQN面积的最小值为8.
点评:本题考查椭圆方程和轨迹方程的求法,考查四边形面积的最小值的求法.综合性强,难度大,是高考的重点.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的离心率;
(2)在第一象限内取双曲线C2上一点P,连接AP交椭圆C1于点M,连接PB并延长交椭圆C1于点N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,直线l:y=x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2:x2-
y2
4
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b2=
0.5
0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,右顶点为A,离心率e=
1
2

(1)设抛物线C2:y2=4x的准线与x轴交于F1,求椭圆的方程;
(2)设已知双曲线C3以椭圆C1的焦点为顶点,顶点为焦点,b是双曲线C3在第一象限上任意-点,问是否存在常数λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案