精英家教网 > 高中数学 > 题目详情
已知向量
a
=(λ,0,-1)
b
=(2,5,λ2)
,若
a
b
,则λ=
0或2
0或2
分析:根据两个向量垂直的性质可得
a
b
=2λ+0-λ2=0,与哦刺球的λ的值.
解答:解:已知向量
a
=(λ,0,-1)
b
=(2,5,λ2)
,若
a
b
,则
a
b
=2λ+0-λ2=0,
解得 λ=0,或λ=2,
故答案为 0或2.
点评:本题主要考查两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
+
b
+
c
=
0
a
b
(
a
-
b
)⊥
c
,M=
|a|
|b|
+
|b|
|c|
+
|c|
|a|
,则M=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-1,0,1)
b
=(1,2,3),k∈R
,且(k
a
-
b
)
b
垂直,则k等于
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(0,1),
c
=k
a
+
b
(k∈R),
d
=
a
-
b
,如果
c
d
那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(x,1)
,当x>0时,定义函数f(x)=
a
b
|
a
|+|
b
|

(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,则:
①当a=1时,证明:an
1
2n

②对任意θ∈[0,2π],当2asinθ-2a+Sn≠0时,
证明:
2asinθ+2a-Sn
2asinθ-2a+Sn
4a-Sn
Sn
2asinθ+2a-Sn
2asinθ-2a+Sn
Sn
4a-Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)已知向量
a
=(1,0)
,向量
b
a
的夹角为60°,且|
b
|=2
.则
b
=(  )

查看答案和解析>>

同步练习册答案