【题目】如图所示,直四棱柱的侧棱长为,底面是边长的矩形,为的中点,
(1)求证:平面,
(2)求异面直线与所成的角的大小(结果用反三角函数表示).
【答案】(1)见解析;(2)
【解析】
(1)先证明EC⊥ED,再利用BC⊥平面CC1D1D,证明BC⊥DE,即可证明DE⊥平面EBC;
(2)取A1B1中点F,连接BF,DF,∠FBD即为所求异面直线的夹角(或其补角),确定△FBD为各边长,根据余弦定理可求∠FBD余弦值,从而求异面直线BD与EC所成的角的大小.
(1)证明:∵直四棱柱的侧棱长为,
底面ABCD是边长AB=2a,BC=a的矩形,
为的中点,
∴EC=ED=a,CD=2a,
∴EC⊥ED,
∵BC⊥平面,DE平面,
∴BC⊥DE,
∵BC∩EC=C
∴DE⊥平面EBC.
(2)取A1B1中点F,连接BF,DF,
易得EC∥FB,
∴∠FBD即为所求异面直线的夹角(或其补角),
连接D1F,△DD1F为直角三角形,
∴,
∴,
又,
根据余弦定理,,
∴,
∴异面直线与所成的角的大小为.
科目:高中数学 来源: 题型:
【题目】已知定义在实数集上的偶函数和奇函数满足.
(1)求与的解析式;
(2)求证:在区间上单调递增;并求在区间的反函数;
(3)设(其中为常数),若对于恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是,,,乙命中10环,9环,8环的概率分别是,,,任意两次射击相互独立.
(1)求甲运动员两次射击命中环数之和恰好为18的概率;
(2)现在甲、乙两人进行射击比赛,每一轮比赛两人各射击1次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,求恰好进行3轮射击后比赛结束的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某年数学竞赛请自以为来自X星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题;然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答的题目则跳过(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答题),这样所有的题目均有作答,设这位选手可能的答题次序有n种,则n的值为( )
A.512B.511C.1024D.1023
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知椭圆的左、右焦点分别为,,点是椭圆的一个顶点,△是等腰直角三角形.
(1)求椭圆的方程;
(2)设点是椭圆上一动点,求线段的中点的轨迹方程;
(3)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为,,
且,探究:直线是否过定点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com