精英家教网 > 高中数学 > 题目详情

【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).

(1)若圆C1与圆C2相交于AB两点,且|AB|=,求点C1到直线AB的距离;

(2)若圆C1与圆C2相内切,求圆C2的方程.

【答案】(1).(2)(x-2)2+(y-1)2=12+8

【解析】

(1) 知直线C1C2垂直平分公共弦AB.设直线ABC1C2的交点为P,再解直角三角形得到

C1到直线AB的距离.(2) 由两圆相内切得|C1C2|=|r1r2|求出r2=2+2,即得圆

C2的方程.

(1)由题设,易知直线C1C2垂直平分公共弦AB.设直线ABC1C2的交点为P

则在Rt△APC1中,

∵|AC1|=2,|AP|=|AB|=

∴点C1到直线AB的距离为|C1P|=.

(2)由题设得,圆C1的圆心为C1(0,-1),半径为r1=2.

设圆C2的半径为r2,则由两圆相内切得|C1C2|=|r1r2|=|2-r2|,

解得r2=2+2r2=2-2 (舍去).

故所求圆C2的方程为(x-2)2+(y-1)2=12+8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=f(x)+m,若函数g(x)恰有三个不同零点,则实数m的取值范围为(
A.(1,10)
B.(﹣10,﹣1)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f( )=0,a=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为(
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1(a1)xyb0l2axby40求满足下列条件的ab的值.

(1)l1l2l1过点(1,1)

(2)l1l2l2在第一象限内与两坐标轴围成的三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端OA到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m,C位于点O正东方向170 m(OC为河岸),tanBCO=.

1)求新桥BC的长;

2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时,.

(1)直接写出函数的增区间(不需要证明);

(2)求出函数的解析式;

(3)若函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中:
①某地市高三理科学生有15000名,在一次调研测试中,数学成绩 服从正态分布 ,已知 ,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上(包括120分)的试卷中抽取 份;
②已知命题 ,则
③在 上随机取一个数 ,能使函数 上有零点的概率为
④设 ,则“ ”是“ ”的充要条件.
其中真命题的序号为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为( ),直线l的极坐标方程为ρcos(θ﹣ )=a,且点A在直线l上,
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

同步练习册答案