精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线于点M,当|FD|=2时,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求△PMN面积的最小值,并求取到最小值时的x1值.

【答案】分析:(1)设,则A处的切线方程为,即可得到得D,Q的坐标,利用两点间的距离公式即可得到|FQ|=|AF|.由点A,Q,D的坐标可知:D为线段AQ的中点,利用等腰三角形的性质可得FD⊥AQ,可得|AF|,利用两点间的距离概率及点A满足抛物线的方程即可得出.
(2)设B(x2,y2)(x2<0),则B处的切线方程为,与切线l1的方程联立即可得到点P的坐标,同理求出点M,N的坐标.进而得到三角形PMN的面积(h为点P到MN的距离),利用表达式及其导数即可得到最小值,即可得出x1的值.
解答:解:(1)设,则A处的切线方程为
可得:

∴△AFQ为等腰三角形.
由点A,Q,D的坐标可知:D为线段AQ的中点,
∴|AF|=4,得:
∴p=2,C:x2=4y.
(2)设B(x2,y2)(x2<0),则B处的切线方程为
联立得到点P,联立得到点M
同理
设h为点P到MN的距离,则==  ①

设AB的方程为y=kx+b,则b>0,
得到x2-4kx-4b=0,
代入①得:S==
要使面积最小,则应k=0,得到
,得=,则=
所以当时,S(t)单调递减;当时,S(t)单调递增,
所以当时,S取到最小值为,此时,k=0,
所以,解得
故△PMN面积取得最小值时的x1值为
点评:本题综合考查了利用导数的几何意义得到抛物线的切线的斜率、直线与抛物线相交问题转化为方程联立得到根与系数的关系、等腰三角形的性质、利用导数研究函数的单调性、极值与最值等知识与方法,熟练掌握其解题模式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为
12

(1)试求抛物线C的方程;
(2)设抛物线C上一点P的横坐标为t(t>0),过P的直线交C于另一点Q,交x轴于M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=
12
y
和定点P(1,2),A、B为抛物线C上的两个动点,且直线PA和PB的斜率为非零的互为相反数.
(I)求证:直线AB的斜率是定值;
(II)若抛物线C在A、B两点处的切线相交于点M,求M的轨迹方程;
(III)若A′与A关于y轴成轴对称,求直线A′B与y轴交点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py,过点A(0,4)的直线l交抛物线C于M,N两点,且OM⊥ON.
(1)求抛物线C的方程;
(2)过点N作y轴的平行线与直线y=-4相交于点Q,若△MNQ是等腰三角形,求直线MN的方程.K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=ay(a>0),斜率为k的直线l经过抛物线的焦点F,交抛物线于A,B两点,且抛物线上一点M(2
2
 , m) (m>1)
到点F的距离是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)过A,B两点分别作抛物线的切线,这两条切线的交点为点Q,求证:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步练习册答案