【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.
【答案】见解析
【解析】解:(1)若AB⊥CD,因为AB⊥AD,AD∩CD=D,
所以AB⊥平面ACD,所以AB⊥AC.
即AB2+a2=BC2,即12+a2=()2,所以a=1。
若AD⊥BC,因为AD⊥AB,
所以AD⊥平面ABC,所以AD⊥AC.
即AD2+a2=CD2,即()2+a2=12,
所以a2=-1,无解.
故AD⊥BC不成立.
(2)要使四面体ABCD的体积最大,因为△BCD的面积为定值,
所以只需三棱锥ABCD的高最大即可,此时平面ABD⊥平面BCD,
过点A作AO⊥BD于点O,
则AO⊥平面BCD,
以O为坐标原点建立空间直角坐标系Oxyz(如图),
则易知A,C(,,0),D,
显然,平面BCD的一个法向量为=。
设平面ACD的法向量为n=(x,y,z).
因为=,=,
所以令y=,得n=(1,,2).
故二面角ACDB的余弦值为|cos〈,n〉|==。
科目:高中数学 来源: 题型:
【题目】已知圆的圆心在轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.
(1)求圆的方程;
(2)设,若圆是的内切圆,求的面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5名男生4名女生站成一排,求满足下列条件的排法:
(1)女生都不相邻有多少种排法?
(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?
(3)男甲不在首位,男乙不在末位,有多少种排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一个以、为半径的扇形池塘,在、上分别取点、,作、分别交弧于点、,且,现用渔网沿着、、、将池塘分成如图所示的养殖区域.已知, , ().
(1)若区域Ⅱ的总面积为,求的值;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当为多少时,年总收入最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCDA1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)在棱AA1上是否存在一点M,使得BM∥平面AD1E?若存在,求的值,若不存在,说明理由;
(3)若二面角B1AED1的大小为90°,求AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com