精英家教网 > 高中数学 > 题目详情

【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.

(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.

(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.

【答案】见解析

【解析】解:(1)若AB⊥CD,因为AB⊥AD,AD∩CD=D,

所以AB⊥平面ACD,所以AB⊥AC.

即AB2+a2=BC2,即12+a2=()2,所以a=1。

若AD⊥BC,因为AD⊥AB,

所以AD⊥平面ABC,所以AD⊥AC.

即AD2+a2=CD2,即()2+a2=12

所以a2=-1,无解.

故AD⊥BC不成立.

(2)要使四面体ABCD的体积最大,因为△BCD的面积为定值

所以只需三棱锥ABCD的高最大即可,此时平面ABD⊥平面BCD,

过点A作AO⊥BD于点O,

则AO⊥平面BCD,

以O为坐标原点建立空间直角坐标系Oxyz(如图),

则易知A,C(,0),D

显然,平面BCD的一个法向量为

设平面ACD的法向量为n=(x,y,z).

因为

所以令y=,得n=(1,,2).

故二面角ACDB的余弦值为|cos〈,n〉|=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)|2x1||x4|.

(1)解不等式f(x)>2

(2)若函数f(x)≥m恒成立,m的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.

(1)求圆的方程;

(2)设,若圆的内切圆,求的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球

1若左右手各取一球,求两只手中所取的球颜色不同的概率;

2若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生4名女生站成一排,求满足下列条件的排法:

(1)女生都不相邻有多少种排法?

(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?

(3)男甲不在首位,男乙不在末位,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一个以为半径的扇形池塘,在上分别取点,作分别交弧于点,且,现用渔网沿着将池塘分成如图所示的养殖区域.已知 ).

(1)若区域Ⅱ的总面积为,求的值;

(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当为多少时,年总收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDA1B1C1D1中,AB=AA1=1,E为BC中点.

(1)求证:C1D⊥D1E;

(2)在棱AA1上是否存在一点M,使得BM∥平面AD1E?若存在,求的值,若不存在,说明理由;

(3)若二面角B1AED1的大小为90°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.

(1)求k的取值范围;

(2)若=12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点 ,且,记点 .

(Ⅰ)求直线的方程;

(Ⅱ)证明:线段与曲线有且只有一个异于的公共点.

查看答案和解析>>

同步练习册答案