精英家教网 > 高中数学 > 题目详情
17.某地区恩格尔系数(表示生活水平高低的一个指标)y(%)与年份x的统计数据如表:
年份x2004200520062007
恩格尔系数y(%)4745.543.541
从散点图可以看出y与x线性相关,且可得回归直线方程为$\widehat{y}$=$\widehat{b}$x+4055.25,据此模型可预测2016年该地区的恩格尔系数为23.25%.

分析 根据已知表中数据计算出样本中心点,再将点的坐标代入回归直线方程,即可求出对应的b值,x=2016代入,预报出2016年该地区的恩格尔系数,这是一个估计值.

解答 解:由题意,$\overline{x}$=2005.5,$\overline{y}$=44.25
∴回归方程过点(2005.5,44.25)
代入得44.25=2005.5×b+4055.25
∴b=-2;
当x=2016(年)时,该地区的恩格尔系数是 2016×(-2)+4055.25=23.25
所以根据回归方程的预测,使用2016年时,预报该地区的恩格尔系数是23.25.
故答案为:23.25.

点评 本题考查回归方程过样本中心点,考查线性回归方程,考查待定系数法求字母系数,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.数列{an}中,a1=4,an+1=an+5,那么这个数列的通项公式是an=5n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l的倾角为45°,且过点(0,-1),则直线l的方程是(  )
A.x-y+1=0B.x-y-1=0C.x+y-1=0D.x+y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={-1,1},B={a},若A∪B={-1,0,1},则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),左、右焦点分别是F1、F2且|F1F2|=2$\sqrt{3}$,以F1为圆心,3为半径的圆与以F2为圆心,1为班级的圆相交于椭圆C上的点K
(1)求椭圆C的方程;
(2)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q
①求$\frac{|OQ|}{|OP|}$的值;
②令$\frac{{m}^{2}}{1+4{k}^{2}}$=t,求△ABQ的面积f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.A高校自主招生设置了先后三道程序,部分高校联合考试、本校专业考试、本校面试,在每道程序中,设置三个成绩等级:优、良、中,若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序,考生只有全部通过三道程序,自主招生考试才算通过,某中学学生甲参加A高校自主招生考试,已知该生在每道程序中得优、良、中的概率分别为$\frac{1}{4}$,$\frac{1}{2}$,$\frac{1}{4}$.
(1)求学生甲能通过A高校自主招生考试的概率;
(2)求学生甲在本次自主招生中获优次数为0的概率;
(3)设ξ为学生甲在本次自主招生中通过的程序次数,求ξ得分布列及ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图是某学校随机调查200 名走读生上学路上所需时间t(单位:分钟)的样本频率分布直方图.
(1)求x的值;
(2)用样本估计总体的思想,估计学校所有走读生上学路上所需要的平均时间是多少分钟?
(3)若用分层抽样的方法从这200名走读生中,抽出25 人做调查,求应在上学路上所需时间分别为[6,10],[18,22]这两组中各抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.平面上A、B、C三点不共线,O是不同于A、B、C的任意一点,若($\overrightarrow{OB}$+$\overrightarrow{OC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=0,则△ABC的形状是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=8,DC=4,则AE=6.

查看答案和解析>>

同步练习册答案