精英家教网 > 高中数学 > 题目详情
2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.
(Ⅰ)若PD=8,CD=1,PO=9,求⊙O的半径;
(Ⅱ)若E为⊙O上的一点,$\widehat{AE}=\widehat{AC}$,DE交AB于点F,求证:PF•PO=PA•PB.

分析 (Ⅰ)若PD=8,CD=1,PO=9,利用割线定理求⊙O的半径;
(Ⅱ)连接OC、OE,先证明△PDF∽△POC,再利用割线定理,即可证得结论.

解答 (Ⅰ)解:∵PA交圆O于B,A,PC交圆O于C,D,
∴PD•PC=PB•PA…(2分)
∴PD•PC=(PO-r)(PO-r)…(3分)
∴8×9=92-r2--------------(5分)
(Ⅱ)证明:连接EO  CO
∵$\widehat{AE}$=$\widehat{AC}$,∴∠EOA=∠COA
∵∠EOC=2∠EDC,∠EOA=∠COA
∴∠EDC=∠AOC,∴∠COP=∠FDP…(7分)
∵∠P=∠P,∴△PDF~△POC---------------(9分)
∴PF•PO=PD•PC,
∵PD•PC=PB•PA,
∴PF•PO=PA•PB---------------(10分)

点评 本题考查的是圆周角定理,相似三角形的判定与性质及割线定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知过A(-1,2)点的一条入射光线l经x轴反射后,经过点B(2,1).
(1)求直线l的方程;
(2)设直线l与x轴交于点C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于函数f(x)=tan(cosx),下列结论中正确的是(  )
A.定义域是[-1,1]B.f(x)是奇函数
C.值域是[-tan1,tan1]D.在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在多面体SP-ABCD中,底面ABCD为矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E为BC的中点.
(1)求证:AE∥面SPD;
(2)求二面角B-PS-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知某几何体如图所示,若四边形ADMN为矩形,四边形ABCD为菱形,且∠DAB=60°,平面ADNM⊥平面ABCD,E为AB中点,AD=2,AM=1.
(1)求证:AN∥平面MEC;
(2)在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{6}$?若存在,求出线段AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=xlnx-ax3+$\frac{1}{2}$x2-x存在极值,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0]C.(-∞,1)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ex-$\frac{1}{x}$+2的零点所在的一个区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,直线$\left\{\begin{array}{l}x={x_0}+tcosα\\ y=tsinα\end{array}$,(t为参数)与抛物线y2=2px(p>0)相交于横坐标分别为x1,x2的A,B两点
(1)求证:x02=x1x2
(2)若OA⊥OB,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正四棱锥P-ABCD中,M,N分别为PA,PB的中点,且侧面与底面所成二面角的正切值为$\sqrt{2}$,则异面直线DM与AN所成角的余弦值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案