精英家教网 > 高中数学 > 题目详情
椭圆C的中心在原点,焦点在x轴上,离心率为,直线l:y=x+m过椭圆C的左焦点,且点(-3+,3-)关于直线l的对称点在椭圆C上,则椭圆C的长轴为(    )

A.3            B.4              C.3                D.6

D

解析:∵

又∵y=x+m过椭圆左焦点,∴m=c,

即直线l为:y=x+c.

则过点()且垂直于y=x+c的直线为y=-x,∴点()关于直线l:y=x+c的对称点为(),

则两对称点的中点坐标为

将其代入y=x+c得c=3,∴2a=.故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆C的中心在原点,焦点在x轴上,短轴的一个端点与左右焦点F1、F2组成一个正三角形,焦点到椭圆上的点的最短距离为
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2作直线l与椭圆C交于A、B两点,线段AB的中点为M,求直线MF1的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4
6
x
的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A、B两点,连MA、MB.
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C的中心在原点,焦点在y轴上,离心率为
2
2
,其一个顶点的坐标是(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若斜率为2的直线l过椭圆C在y轴正半轴上的焦点,且与该椭圆交于A、B两点,求AB的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,一个焦点为F1(0,
2
)
,离心率为e=
2
2
,点P为第一象限内横坐标为1的椭圆C上的点,过点P作倾斜角互补的两条不同的直线PA、PB分别交椭圆C于两点A、B.
(1)求椭圆C的方程;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宜宾一模)已知椭圆C的中心在原点,焦点在x轴上,离心率为
1
2
,短轴长为4
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)P(2,n),Q(2,-n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.
①若直线AB的斜率为
1
2
,求四边形APBQ面积的最大值;
②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.

查看答案和解析>>

同步练习册答案