精英家教网 > 高中数学 > 题目详情
15、设函数f(x)的定义域为D,若存在非零实数t,使得对于任意x∈M(M⊆D)有x+t∈D且f(x+t)≥f(x),则称f(x)在M上的t给力函数,若定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m给力函数,则m的取值范围为
m≥2
分析:先根据给力函数的定义列出不等式恒成立,要使不等式恒成立求出左边函数的最值,令最值大于等于0,求出m的范围.
解答:解:据给力函数的定义
f(x+m)≥f(x)
即2mx+m2≥0,其中x∈[-1,+∞),x+m∈[-1,+∞),恒成立
要使x+m≥-1恒成立需m≥0
要使2mx+m2≥0恒成立,只需-2m+m2≥0
解得m≥2
故答案为m≥2
点评:本题考查对题中新定义的正确理解;考查解决不等式恒成立转化为求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案