精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设cn=an+bn,Sn为数列{cn}的前n项和.求
lim
n→∞
Sn
Sn-1
Sn=
a1(pn-1)
p-1
+
b1(qn-1)
q-1
Sn
Sn-1
=
a1(q-1)(pn-1)+b1(p-1)(qn-1)
a1(q-1)(pn-1-1)+b1(p-1)(qn-1-1)

分两种情况讨论.(Ⅰ)p>1.
p>q>0,0<
q
p
<1
 
lim
n→∞
Sn
Sn-1
=
lim
n→∞
pn[a1(q-1)(1-
1
pn
)+b1(p-1)(
qn
pn
-
1
pn
)]
pn-1[a1(q-1)(1-
1
pn-1
)+b1(p-1)(
qn-1
pn-1
-
1
pn-1
)]

=p•
lim
n→∞
a1(q-1)(1-
1
pn
)+b1(p-1)[(
q
p
)
n
-
1
pn
]
a1(q-1)(1-
1
pn-1
)+b1(p-1)[(
q
p
)
n-1
-
1
pn-1
]
=p•
a1(q-1)
a1(q-1)

=p.
(Ⅱ)p<1.
∵0<q<p<1,
lim
n→∞
Sn
Sn-1
=
lim
n→∞
a1(q-1)(pn-1)+b1(p-1)(qn-1)
a1(q-1)(pn-1-1)+b1(p-1)(qn-1-1)
=
-a1(q-1)-b1(p-1)
-a1(q-1)-b1(p-1)
=1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案