【题目】若存在两个正实数m、n,使得等式a(lnn﹣lnm)(4em﹣2n)=3m成立(其中e为自然对数的底数),则实数a的取值范围是( )
A.(﹣∞,0)
B.(0, ]
C.[ ,+∞)
D.(﹣∞,0)∪[ ,+∞)
【答案】D
【解析】解:由3m+a(2n﹣4em)(lnn﹣lnm)=0,
得3m+2a(n﹣2em)ln =0,
即3+2a( ﹣2e)ln =0,
即设t= ,则t>0,
则条件等价为3+2a(t﹣2e)lnt=0,
即(t﹣2e)lnt=﹣ 有解,
设g(t)=(t﹣2e)lnt,
g′(t)=lnt+1﹣ 为增函数,
∵g′(e)=lne+1﹣ =1+1﹣2=0,
∴当t>e时,g′(t)>0,
当0<t<e时,g′(t)<0,
即当t=e时,函数g(t)取得极小值为:g(e)=(e﹣2e)lne=﹣e,
即g(t)≥g(e)=﹣e,
若(t﹣2e)lnt=﹣ 有解,
则﹣ ≥﹣e,即 ≤e,
则a<0或a≥ ,
故实数a的取值范围是(﹣∞,0)∪[ ,+∞).
故选:D.
科目:高中数学 来源: 题型:
【题目】过三点A(﹣3,2),B(3,﹣6),C(0,3)的圆的方程为( )
A.x2+y2+4y﹣21=0
B.x2+y2﹣4y﹣21=0
C.x2+y2+4y﹣96=0
D.x2+y2﹣4y﹣96=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;
(3)当二面角的大小为时,求PC与底面ABCD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=m6x﹣4x , m∈R.
(1)当m= 时,求满足f(x+1)>f(x)的实数x的范围;
(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程有实根,求实数的取值范围;
(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:
空气质量指数t | (0,50] | (50,100] | (100,150] | (150,200] | (200,300] | (300,+∞) |
质量等级 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 严重污染 |
天数K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y= ,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合于曲线 ,现已取出了10对样本数据(ti , yi)(i=1,2,3,…,10),且 =42500, =500,求拟合曲线方程. (附:线性回归方程 =a+bx中,b= ,a= ﹣b )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com