精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数y=f(x),对任意不等的实数x1,x2都有[f(x1)-f(x2)](x1-x2)<0成立,若不等式f(x2-2x)+f(2y-y2)≤0成立,则当1≤x≤4时,的取值范围为   
【答案】分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函数f(x)是定义在R上的减函数;再利用函数f(x)是定义在R上的奇函数得f(-x)=-f(x),二者相结合及不等式得(x-y)(x+y-2)≥0,结合的几何意义可求范围
解答:解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函数f(x)是定义在R上的减函数
又因为函数f(x)是定义在R上的奇函数,所以有函数f(-x)=-f(x)
∵f(x2-2x)+f(2y-y2)≤0
∴f(x2-2x)≤-f(2y-y2)=f(y2-2y)
∴x2-2x≥y2-2y即(x-y)(x+y-2)≥0,又1≤x≤4

作出不等式组表示的平面区域,如图所求的阴影部分,
令k=,则k的几何意义是在可行域内任取一点,与原点(0,0)连线的斜率
可得C(4,4),由可得B(4,-2)
∵KOC=KOA=1,
结合图形可知,
故答案为[-,1]
点评:本题主要考查函数奇偶性和单调性的综合应用问题.关键点有两处:①判断出函数f(x)的单调性;②利用奇函数的性质得到函数f(-x)=-f(x)③明确目标函数的几何意义
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、下列说法错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:①y=1是幂函数;    
②定义在R上的奇函数y=f(x)满足f(0)=0
③函数f(x)=lg(x+
x2+1
)
是奇函数  
④当a<0时,(a2)
3
2
=a3

⑤函数y=1的零点有2个;
其中正确结论的序号是
②③
②③
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数y=f(x),当x<0时,f(x)=(
1
3
)x
,那么,f(
1
2
)
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数y=f(x),已知y=f(x)在区间(0,+∞)有3个零点,则函数y=f(x)在R上的零点个数为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数y=f(x)在(-∞,0)上单调递减,且f(2)=0,则满足f(x)-f(-x)>0的实数x的范围是(  )
A、(-∞,-2)B、(-2,0)∪(0,2)C、(-∞,-2)∪(0,2)D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步练习册答案