精英家教网 > 高中数学 > 题目详情
16.已知曲线C上任一点P到点F(1,0)的距离比它到直线l:x=-2的距离少1.
(1)求曲线C的方程;
(2)过点Q(1,2)作两条倾斜角互补的直线与曲线C分别交于点A、B,试问:直线AB的斜率是否为定值,请说明理由.

分析 (1)由抛物线的定义可知点P的轨迹是以F为焦点、以直线l:x=-1为准线的抛物线;
(2)设出A,B的坐标,利用抛物线的方程,结合直线AQ,BQ倾斜角互补,得出y1+y2=-4,代入斜率公式计算kAB

解答 解:(1)因为P到点F(1,0)的距离比它到直线l:x=-2的距离少1
所以P到点F(1,0)的距离与它到直线l:x=-1的距离相等
所以由抛物线定义可知点P的轨迹是以F为焦点、以直线l:x=-1为准线的抛物线…(2分)
所以P=2,…,(4分)
所以曲线C的方程为y2=4x…,(5分)
(2)直线AB的斜率为定值-1,理由如下:…(6分)
设A(x1,y1),B(x2,y2),则y12=4x1,y22=4x2…(7分)
因为直线AQ,BQ倾斜角互补
所以$\frac{{y}_{1}-2}{{x}_{1}-1}$+$\frac{{y}_{2}-2}{{x}_{2}-1}$=0…(9分)
所以化简得y1+y2=-4…(10分)
所以kAB=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=-1 …(12分)

点评 本题考查了抛物线的定义与性质,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=lnx+$\frac{2a}{x+1}$-a(a∈R)在[$\frac{1}{2}$,+∞)上单调递增,则a的取值范围是(  )
A.[$\frac{9}{4}$,+∞)B.[2,+∞)C.(-∞,$\frac{9}{4}$]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,若a3a6=9,a1a2a8=27,则a2的值为(  )
A.9B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据2x1-1,2x2-1,2x3-1,2x4-1,2x5-1的平均数,方差分别是(  )
A.3,$\frac{4}{3}$B.3,$\frac{3}{2}$C.4,$\frac{4}{3}$D.4,$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点P是双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)在第一象限的某点,F1、F2为双曲线的焦点.若P在以F1F2为直径的圆上且满足|PF1|=3|PF2|,则双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取
3次,则取得小球标号最大值是3的取法有19种(结果用数字表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cos(α-$\frac{π}{6}}$)+sinα=$\frac{4}{5}\sqrt{3}$,则sin(α+$\frac{7π}{6}}$)的值是(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.80-$\frac{20}{3}$πB.80+$\frac{20}{3}$πC.112+(2$\sqrt{29}$-4)πD.112+2$\sqrt{29}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-mx+m,m、x∈R.
(1)若关于x的不等式f(x)>0的解集为R,求m的取值范围;
(2)若实x1,x2数满足x1<x2,且f(x1)≠f(x2),证明:方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]至少有一个实根x0∈(x1,x2);
(3)设F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.

查看答案和解析>>

同步练习册答案