【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,,第二组,,第八组,,如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.
【答案】(1),绘图见解析;(2);(3)
【解析】
(1)由频率分布直方图可得:各小矩形的高之和为0.1,运算可得解;
(2)由频率分布直方图中平均数的求法即可得解;
(3)样本成绩属于第六组的有人,样本成绩属于第八组的有人,则随机抽取2名,
基本事件总数为,他们的分差的绝对值小于10分包含的基本事件个数为,再利用古典概型概率公式运算即可.
解:(1)由频率分布直方图得第七组的频率为:
.
完成频率分布直方图如下:
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:
.
(3)样本成绩属于第六组的有人,样本成绩属于第八组的有人,
从样本成绩属于第六组和第八组的所有学生中随机抽取2名,
基本事件总数,
他们的分差的绝对值小于10分包含的基本事件个数,
故他们的分差的绝对值小于10分的概率.
科目:高中数学 来源: 题型:
【题目】如图所示在四棱锥中,下底面为正方形,平面平面,为以为斜边的等腰直角三角形,,若点是线段上的中点.
(1)证明平面.
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线的参数方程和圆的标准方程;
(2)设直线与圆交于、两点,若,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有四座城市、、、,其中在的正东方向,且与相距,在的北偏东方向,且与相距;在的北偏东方向,且与相距,一架飞机从城市出发以的速度向城市飞行,飞行了,接到命令改变航向,飞向城市,此时飞机距离城市有( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P到直线y=﹣4的距离比点P到点A(0,1)的距离多3.
(1)求点P的轨迹方程;
(2)经过点Q(0,2)的动直线l与点P的轨交于M,N两点,是否存在定点R使得∠MRQ=∠NRQ?若存在,求出点R的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com