【题目】在如图所示的几何体中,是边长为2的正三角形,平面ABC,平面平面ABC,,且.
(1)若,求证:平面BDE;
(2)若二面角为,求直线CD与平面BDE所成角.
【答案】(1)见解析;(2)
【解析】
(1)先根据条件建立空间直角坐标系,设立各点坐标,利用向量数量积求出平面BDE法向量,根据向量垂直坐标表示以及线面平行判定定理证明线面平行,
(2)在(1)基础上利用向量数量积求出平面BDE以及平面法向量,根据向量数量积求出两法向量夹角,再根据二面角求出,最后利用空间向量求线面角.
(1)取的中点,连接,,
因为,,,为的中点,所以,。
又因为平面平面,所以平面,因为是边长为2的正三角形,所以,;
建立如图所示的空间直角坐标系,
则,,,,,
,,因为,所以,。
设平面的法向量,则
令,所以。
因为,所以,
又平面,所以平面。
(2)设,则,。
设平面的法向量,
则
令,所以。
又平面的法向量,
所以,解得,即知平面的法向量。设直线与平面所成的角为,而,所以,所以,即直线与平面所成的角为.
科目:高中数学 来源: 题型:
【题目】已知抛物线P:的焦点为F,经过点作直线与抛物线P相交于A,B两点,设,.
(1)求的值;
(2)是否存在常数a,当点M在抛物线P上运动时,直线都与以MF为直径的圆相切?若存在,求出所有a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,过点的直线,分别交于不同的两点、,直线恒过点
(1)证明:直线,的斜率之和为定值;
(2)直线,分别与轴相交于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且以,为焦点,椭圆的离心率为.
(1)求实数的值;
(2)过左焦点的直线与椭圆相交于、两点,为坐标原点,问椭圆上是否存在点,使线段和线段相互平分?若存在,求出点的坐标,若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com