设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则下列命题中是真命题的个数是( )
①存在一个圆与所有直线相交②存在一个圆与所有直线不相交;
③存在一个圆与所有直线相切④M中所有直线均经过一个定点;
⑤不存在定点P不在M中的任一条直线上;
⑥对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
⑦M中的直线所能围成的正三角形面积都相等.
A.3
B.4
C.5
D.6
【答案】
分析:根据已知可知直线系M都为以(0,2)为圆心,以1为半径的圆的切线,取半径为2即可得到所以①对;存在圆心为(0,2),半径为
的圆与直线都不相交,所以②对;③显然对;④错;⑤错,存在可取一点(0,2)即可验证;⑥,⑦可去三角形的外接正三角形所有边均在M中的直线上且面积相等,所以⑥⑦都正确.
解答:解:根据直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)得到所有直线都为圆心为(0,2),半径为1的圆的切线;
可取圆心为(0,2),半径分别为2,
,1得到①②③正确;所有的直线与一个圆相切,没有过定点,④错;存在(0,2)不在M中的任一条直线上,所以⑤错;存在等边三角形的三边都在M中的直线上,⑥⑦对,可取圆的外接正三角形其所有边均在M中的直线上且面积相等;可知①②③⑥⑦正确,④⑤错,所以真命题的个数为5个
故选C
点评:考查学生利用直线的斜截式方程得到直线系M为平面内除过一个圆的区域.