精英家教网 > 高中数学 > 题目详情

设满足以下两个条件得有穷数列阶“期待数列”:
,②.
(1)若等比数列阶“期待数列”,求公比
(2)若一个等差数列既为阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记阶“期待数列”的前项和为.
)求证:
)若存在,使,试问数列是否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

(1);(2);(3)()证明见解析;()不能,理由见解析.

解析试题分析:
(1)由阶“期待数列”定义,当,结合已知条件①求得等比数列的公比,若,由①得, ,得,不可能,所以
(2)设出等差数列的公差,结合①②求出公差,再由前项和为求出首项,则等差数列的通项公式可求;
(3)()由阶“期待数列”项中所有的和为0,所有项的绝对值之和为1,求得所有非负项的和为,所有负项的和为,从而得到答案;
)借助于()中结论知,数列的前项和为,且满足,再由,得到,从而说明不能同时成立.
(1) 若,则由①
,所以,得
由②得,满足题意.
,由①得, ,得,不可能.
综上所述.                
(2)设等差数列的公差为.
因为,所以.
所以.
因为,所以由,得
由题中的①、②得
,   
两式相减得, 即. 又,得.
所以.
(3) 记中非负项和为,负项和为.
, 得.
) 因为,所以.    
) 若存在,使,由前面的证明过程知:

.
记数列的前

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和,数列{bn}满足b1=1,b3+b7=18,且(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•福建)已知等差数列{an}中,a1=1,a3=﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足,且恰为等比数列的前三项.
(1)证明:数列为等差数列; (2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且成等比数列.
(1)求数列{an}的通项公式及Sn
(2)记An=+++…+,Bn=++…+,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=2,an=2-(n≥2,n∈N*).
(1)设bn,n∈N*,求证:数列{bn}是等差数列;
(2)设cn(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•天津)已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设,求数列{Tn}的最大项的值与最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是正数组成的数列,其前项和为,且对所有的正整数与2的等差中项等于与2的等比中项,求:数列的通项公式。

查看答案和解析>>

同步练习册答案