精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,PA=PB.底面ABCD是菱形,且∠ABC=60°.E在棱PD上,满足PE=2DE,M是AB的中点.
(1)求证:平面PAB⊥平面PMC;
(2)求证:直线PB∥平面EMC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)根据已知中,PA=PB.底面ABCD是菱形点M是AB的中点,根据等边三角形的‘三线合一’的性质,我们易得到AB⊥平面PMC,再由面面垂直的判定定理,即可证明结论;
(2)连BD交MC于F,连EF,由CD=2BM,CD∥BM,我们可以得到△CDF∽△MBF,根据三角形相似的性质,可以得到DF=2BF.再根据DE=2PE,结合平行线分线段成比例定理,易判断EF∥PB,结合线面平行的判定定理,即可得到结论.
解答: 证明:(1)∵PA=PB,M是AB的中点.
∴PM⊥AB.(2分)
∵底面ABCD是菱形,∴AB=AC.
∵∠ABC=60°.
∴△ABC是等边三角形.
则:CM⊥AB
又∵PM∩CM=M
∴AB⊥平面PAB
∴平面PAB⊥平面PMC
(2)连结BD交MC于F,连结EF
由CD=2BM  CD∥BM
易得:△CDF∽△MBF
∴DF=2BF
DE=2PE
∴EF∥PB
EF?平面EMC  PB?平面EMC
∴PB∥平面EMC
点评:本题考查的知识要点:线面垂直的判定定理和性质定理,面面垂直的判定定理,线面平行的判定定理,及三角形的相似问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2=4(y≥0),则m=
3
x+y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,点M到点F(2,0)的距离比它到y轴的距离多2,记点M的轨迹为C.
(1)求轨迹为C的方程;
(2)设斜率为k的直线l过定点P(-4,2),求直线l与轨迹C恰好有一个公共点,两个公共点,三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,2},B={1,2,3},则∁(AUB)(A∩B)=(  )
A、{0,3}
B、{1,2}
C、∅
D、{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2ax2+(a+4)x+lnx(a∈R).
(1)若a=
1
5
,求f(x)在点(1,f(1))处的切线方程;
(2)若a为整数,且函数的y=f(x)图象与x轴交于不同的两点,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设AB、A′B′分别是圆O:x2+y2=4和椭圆C:
x2
4
+y2
=1的弦,且弦的端点在y轴的异侧,端点A与A′、B与B′的横坐标分别相等,纵坐标分别同号.
(1)若弦A′B′所在直线斜率为-1,且弦A′B′的中点的横坐标为
4
5
,求直线A′B′的方程;
(2)若弦AB过定点M(0,
3
2
)
,试探究弦A′B′是否也必过某个定点.若有,请证明;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={x||x|<5},T={x|x2+4x-21<0},则S∩T=(  )
A、{x|-7<x<-5}
B、{x|3<x<5}
C、{x|-5<x<3}
D、{x|-7<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x,x<0
x
,x≥0
,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是(  )
A、[
1
2
,+∞)
B、(0,+∞)
C、C(0,1)
D、(0,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x2
a
2
n
-y2=1(an>0,n∈N*)的一个焦点为F(
n2+1
,0).
(1)求an
(2)令bn=
1
anan+1
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

同步练习册答案