精英家教网 > 高中数学 > 题目详情
如图1,在直角梯形中,,,,点中点.将沿折起,使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;
(2)求点到平面的距离.
(1)详见解析;(2).

试题分析:(1)取的中点,连接.利用三角形的中位线定理和线面平行的判定定理即可证明;
(2)利用等体积转化,为等腰直角三角形,,,可证,得到,为直角三角形,这样借助等体积转化求出点C到平面的距离,中档题型.
试题解析:(1)取的中点,连结,   2分
中,,分别为,的中点
的中位线

平面平面
平面  -6分
(2)设点到平面ABD的距离为

平面



三棱锥的高,


   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1
A1C1的中点.
(1)求证:CB1⊥平面ABC1
(2)求证:MN//平面ABC1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在四棱锥中,底面是正方形,,点上,且.

(1)求证:平面;   
(2)求二面角的余弦值;
(3)证明:在线段上存在点,使∥平面,并求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱台中,底面是平行四边形,平面.

(1)证明:平面
(2)证明:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥中,底面是菱形,,平面平面的中点,是棱上一点,且.

(1)求证:平面
(2)证明:∥平面
(3)求二面角的度数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥,底面是矩形,平面底面平面,且点上.

(1)求证:
(2)求三棱锥的体积;
(3)设点在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,给出下列条件,能得到的是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给岀四个命题:
(1)若一个角的两边分别平行于另一个角的两边,则这两个角相等;
(2)a,b为两个不同平面,直线aÌa,直线bÌa,且a∥b,b∥b,则a∥b;
(3)a,b为两个不同平面,直线m⊥a,m⊥b,则a∥b;
(4)a,b为两个不同平面,直线m∥a,m∥b,则a∥b .
其中正确的是(   )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,OACBD的交点,BB1M是线段B1D1的中点.

(1)求证:BM∥平面D1AC
(2)求证:D1O⊥平面AB1C
(3)求二面角B-AB1-C的大小.

查看答案和解析>>

同步练习册答案