分析 (1)连接B1N,B1C,设B1C与NC1交于点G,推导出四边形B1C1CN是平行四边形,从而MG∥AB1,由此能证明AB1∥平面C1MN.
(2)以点M为坐标原点,MA,MB,MA1所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角C-MC1-N的大小.
解答 证明:(1)连接B1N,B1C,
设B1C与NC1交于点G,在三棱台ABC-A1B1C1中,
AB=2A1B1,则BC=2B1C1,
而N是BC的中点,B1C1∥BC,
则B1C1$\underset{∥}{=}$NC,所以四边形B1C1CN是平行四边形,G是B1C的中点,
在△AB1C中,M是AC的中点,则MG∥AB1,
又AB1?平面C1MN,MG?平面C1MN,
所以AB1∥平面C1MN.
解:(2)由CC1⊥平面ABC,可得A1M⊥平面ABC,
而AB⊥BC,AB=BC,则MB⊥AC,
所以MA,MB,MA1两两垂直,
故以点M为坐标原点,MA,MB,MA1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系.
设AB=2,则A1B1=CC1=1,AC=2$\sqrt{2}$,AM=$\sqrt{2}$,
B(0,$\sqrt{2}$,0),C(-$\sqrt{2}$,0,0),C1(-$\sqrt{2}$,0,1),N(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),
则平面ACC1A1的一个法向量为$\overrightarrow{n}$=(0,1,0),
设平面C1MN的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{MN}=-\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y=0}\\{\overrightarrow{n}•\overrightarrow{MC}=-\sqrt{2}x+z=0}\end{array}\right.$,
取x=1,则$\overrightarrow{n}$=(1,1,$\sqrt{2}$),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{1}{2}$,
由图形得得二面角C-MC1-N为锐角,
所以二面角C-MC1-N的大小为60°.
点评 本题考查线面平行的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m≥$\sqrt{3}$ | B. | m≤$\sqrt{3}$ | C. | m≤-$\sqrt{3}$ | D. | -$\sqrt{3}$≤m≤$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com