精英家教网 > 高中数学 > 题目详情
13.椭圆C的焦点为F1(-$\sqrt{2}$,0),${F_2}(\sqrt{2},0)$,且点$M(\sqrt{2},1)$在椭圆C上.过点P(0,1)的动直线l与椭圆相交于A,B两点,点B关于y轴的对称点为点D(不同于点A).
(I) 求椭圆C的标准方程;
(II)证明:直线AD恒过定点,并求出定点坐标.

分析 (Ⅰ)法一:由题意可得关于a,b,c的方程组,解得即可,
法二:直接根据椭圆的定义求出a的值,以及c的值,问题得以解决,
(Ⅱ)法一:直线方程与椭圆方程联立方程组,根据韦达定理,以及利用判断出存在定点Q满足条件,则Q(0,2),再根据斜率的即可判断A,D,Q三点共线.
即直线AD恒过定点,定点坐标为Q(0,2).
法二:直线方程与椭圆方程联立方程组,根据韦达定理,求出直线AD的方程,再判断过定点.

解答 解:( I)法一
设椭圆C的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$.
由已知得$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{2}{a^2}+\frac{1}{b^2}=1\\ c=\sqrt{2}\end{array}\right.$,解得$\left\{\begin{array}{l}a=2\\ b=\sqrt{2}\end{array}\right.$.
所以椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
法二
设椭圆c的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$.
由已知得$c=\sqrt{2}$,$2a=|{M{F_1}}|+|{M{F_2}}|=\sqrt{{{[\sqrt{2}-(-\sqrt{2})]}^2}+1}+1=4$.
所以a=2,b2=a2-c2=2.
所以椭圆c的方程为为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
( II)法一
当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\\{y=kx+1}\end{array}\right.$得(2k2+1)x2+4kx-2=0.
设A(x1,y1),B(x2,y2).
则$\left\{\begin{array}{l}△=16{k^2}+8(2{k^2}+1)>0\\{x_1}+{x_2}=-\frac{4k}{{2{k^2}+1}}\\{x_1}{x_2}=-\frac{2}{{2{k^2}+1}}.\end{array}\right.$
特殊地,当A为(2,0)时,k=-$\frac{1}{2}$,所以2x2=-$\frac{4}{3}$,x2=-$\frac{2}{3}$,y2=$\frac{4}{3}$,即B(-$\frac{2}{3}$,$\frac{4}{3}$)
所以点B关于y轴的对称点D($\frac{2}{3}$,$\frac{4}{3}$),则直线AD的方程为y=-x+2.
又因为当直线l斜率不存时,直线AD的方程为x=0,
如果存在定点Q满足条件,则Q(0,2).
所以KQA=$\frac{{y}_{1}-2}{{x}_{1}}$=$\frac{{y}_{1}-1-1}{{x}_{1}}$=k-$\frac{1}{{x}_{1}}$,KQB=$\frac{{y}_{2}-2}{-{x}_{2}}$=-k+$\frac{1}{{x}_{2}}$,
又因为 ${k_{QA}}-{k_{QB}}=2k-(\frac{1}{x_1}+\frac{1}{x_2})=2k-(\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}})=2k-2k=0$,
所以KQA=KQB,即A,D,Q三点共线.
即直线AD恒过定点,定点坐标为Q(0,2).
法二
( II)①当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.
由$\left\{\begin{array}{l}y=kx+1\\{x^2}+2{y^2}=4\end{array}\right.$,可得(1+2k2)x2+4kx-2=0.
设A(x1,y1),B(x2,y2),则D(-x2,y2).
所以$\left\{\begin{array}{l}△=16{k^2}+8(2{k^2}+1)>0\\{x_1}+{x_2}=-\frac{4k}{{2{k^2}+1}}\\{x_1}{x_2}=-\frac{2}{{2{k^2}+1}}.\end{array}\right.$
因为${k_A}_D=\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}$,
所以直线AD的方程为:$y-{y_1}=\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}(x-{x_1})$.
所以$y=\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}{y_2}-{x_1}{y_1}}}{{{x_2}+{x_1}}}+{y_1}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}{y_2}-{x_1}{y_1}+{x_2}{y_1}+{x_1}{y_1}}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}{y_2}+{x_2}{y_1}}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}(k{x_2}+1)+{x_2}(k{x_1}+1)}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{2k{x_1}{x_2}+{x_2}+{x_1}}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{2k{x_1}{x_2}}}{{{x_2}+{x_1}}}+1$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+2$.
因为当x=0,y=2,
所以直线MD恒过(0,2)点.
②当k不存在时,直线AD的方程为x=0,过定点(0,2).
综上所述,直线AD恒过定点,定点坐标为(0,2).

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线方程为3x+2y=0,则b等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,则n=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设 $a=ln\frac{1}{2},b={2^{\frac{1}{e}}},c={e^{-2}}$,则(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在矩形ABCD中,AB=2,BC=1,那么$\overrightarrow{AC}•\overrightarrow{AB}$=4;若E为线段AC上的动点,则$\overrightarrow{AC}•\overrightarrow{BE}$的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,若$|{\overrightarrow{AB}-\overrightarrow{AD}}|=|{\overrightarrow{AB}+\overrightarrow{AD}}|$,则平行四边形ABCD是(  )
A.矩形B.梯形C.正方形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$C=\sqrt{2},∠B=\frac{π}{4},b=2$,则∠A=105°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an} 是各项均为正数的等比数列,且a2=1,a3+a4=6
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设数列{an-n} 的前n 项和为Sn,比较S4 和S5 的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆心为C的圆过点A(-2,2),B(-5,5),且圆心在直线l:x+y+3=0上
(Ⅰ)求圆心为C的圆的标准方程;
(Ⅱ)过点M(-2,9)作圆的切线,求切线方程.

查看答案和解析>>

同步练习册答案