分析 (Ⅰ)法一:由题意可得关于a,b,c的方程组,解得即可,
法二:直接根据椭圆的定义求出a的值,以及c的值,问题得以解决,
(Ⅱ)法一:直线方程与椭圆方程联立方程组,根据韦达定理,以及利用判断出存在定点Q满足条件,则Q(0,2),再根据斜率的即可判断A,D,Q三点共线.
即直线AD恒过定点,定点坐标为Q(0,2).
法二:直线方程与椭圆方程联立方程组,根据韦达定理,求出直线AD的方程,再判断过定点.
解答 解:( I)法一
设椭圆C的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$.
由已知得$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{2}{a^2}+\frac{1}{b^2}=1\\ c=\sqrt{2}\end{array}\right.$,解得$\left\{\begin{array}{l}a=2\\ b=\sqrt{2}\end{array}\right.$.
所以椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
法二
设椭圆c的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$.
由已知得$c=\sqrt{2}$,$2a=|{M{F_1}}|+|{M{F_2}}|=\sqrt{{{[\sqrt{2}-(-\sqrt{2})]}^2}+1}+1=4$.
所以a=2,b2=a2-c2=2.
所以椭圆c的方程为为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
( II)法一
当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\\{y=kx+1}\end{array}\right.$得(2k2+1)x2+4kx-2=0.
设A(x1,y1),B(x2,y2).
则$\left\{\begin{array}{l}△=16{k^2}+8(2{k^2}+1)>0\\{x_1}+{x_2}=-\frac{4k}{{2{k^2}+1}}\\{x_1}{x_2}=-\frac{2}{{2{k^2}+1}}.\end{array}\right.$
特殊地,当A为(2,0)时,k=-$\frac{1}{2}$,所以2x2=-$\frac{4}{3}$,x2=-$\frac{2}{3}$,y2=$\frac{4}{3}$,即B(-$\frac{2}{3}$,$\frac{4}{3}$)
所以点B关于y轴的对称点D($\frac{2}{3}$,$\frac{4}{3}$),则直线AD的方程为y=-x+2.
又因为当直线l斜率不存时,直线AD的方程为x=0,
如果存在定点Q满足条件,则Q(0,2).
所以KQA=$\frac{{y}_{1}-2}{{x}_{1}}$=$\frac{{y}_{1}-1-1}{{x}_{1}}$=k-$\frac{1}{{x}_{1}}$,KQB=$\frac{{y}_{2}-2}{-{x}_{2}}$=-k+$\frac{1}{{x}_{2}}$,
又因为 ${k_{QA}}-{k_{QB}}=2k-(\frac{1}{x_1}+\frac{1}{x_2})=2k-(\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}})=2k-2k=0$,
所以KQA=KQB,即A,D,Q三点共线.
即直线AD恒过定点,定点坐标为Q(0,2).
法二
( II)①当直线l的斜率存在时(由题意k≠0),设直线l的方程为y=kx+1.
由$\left\{\begin{array}{l}y=kx+1\\{x^2}+2{y^2}=4\end{array}\right.$,可得(1+2k2)x2+4kx-2=0.
设A(x1,y1),B(x2,y2),则D(-x2,y2).
所以$\left\{\begin{array}{l}△=16{k^2}+8(2{k^2}+1)>0\\{x_1}+{x_2}=-\frac{4k}{{2{k^2}+1}}\\{x_1}{x_2}=-\frac{2}{{2{k^2}+1}}.\end{array}\right.$
因为${k_A}_D=\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}$,
所以直线AD的方程为:$y-{y_1}=\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}(x-{x_1})$.
所以$y=\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}{y_2}-{x_1}{y_1}}}{{{x_2}+{x_1}}}+{y_1}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}{y_2}-{x_1}{y_1}+{x_2}{y_1}+{x_1}{y_1}}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}{y_2}+{x_2}{y_1}}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{{x_1}(k{x_2}+1)+{x_2}(k{x_1}+1)}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{2k{x_1}{x_2}+{x_2}+{x_1}}}{{{x_2}+{x_1}}}$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+\frac{{2k{x_1}{x_2}}}{{{x_2}+{x_1}}}+1$,
=$\frac{{{y_2}-{y_1}}}{{-{x_2}-{x_1}}}•x+2$.
因为当x=0,y=2,
所以直线MD恒过(0,2)点.
②当k不存在时,直线AD的方程为x=0,过定点(0,2).
综上所述,直线AD恒过定点,定点坐标为(0,2).
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 矩形 | B. | 梯形 | C. | 正方形 | D. | 菱形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com