精英家教网 > 高中数学 > 题目详情

【题目】如图:四棱锥P﹣ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.

(1)求证:AM∥平面PBC;
(2)求证:CD⊥PA.

【答案】
(1)证明:∵底面ABCD是直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点

∴AB CM,∴四边形ABCM是平行四边形,

∴AM∥BC,

∵AM平面PBC,BC平面PBC,

∴AM∥平面PBC


(2)证明:∵PD=PC,点M是CD的中点,

∴PM⊥CD,

∵底面ABCD是直角梯形,AB⊥BC,AB∥CD,AM∥BC,

∴CD⊥AM,

∵PM∩AM=M,

∴CD⊥平面PAM,

∵PA平面PAM,

∴CD⊥PA.


【解析】(1)求证直线平行于平面即证明该直线平行于该平面内的一条直线即可;(2)求证直线垂直于平面即证明直线与该平面内两条相交直线垂直.
【考点精析】根据题目的已知条件,利用空间中直线与直线之间的位置关系和直线与平面平行的判定的相关知识可以得到问题的答案,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点;平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数定义域为上单调递减,则称为函数的峰点, 为含峰函数.(特别地,若上单调递增或递减,则峰点为1或0).

对于不易直接求出峰点的含峰函数,可通过做试验的方法给出的近似值,试验原理为:对任意的为含峰区间,此时称为近似峰点;若为含峰区间,此时称为近似峰点”.

我们把近似峰点与之间可能出现的最大距离称为试验的预计误差”,记为,其值为其中表示中较大的数

求此试验的预计误差;

如何选取才能使这个试验方案的预计误差达到最小?并证明你的结论(只证明的取值即可).

)选取可以确定含峰区间为在所得的含峰区间内选取,类似地可以进一步得到一个新的预计误差.分别求出当时预计误差的最小值.(本问只写结果,不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足 2<x≤3.
(1)若a=1,有p且q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);

(2)求函数的单调递增区间;

(3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l1:y=x+a和l2:y=x+b将圆(x﹣1)2+(y﹣2)2=8分成长度相同的四段弧,则ab=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥面ABC,侧面AA1C1C为菱形,∠A1AC=60°,E,F分别为A1C1和AB的中点.

(1)求证:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱长为2,求三棱柱F﹣ECB的体积;
(3)D为棱BC上一点,若C1D∥EF,请确定点D位置,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)右顶点与右焦点的距离为 ﹣1,短轴长为2 . (Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若△OAB(O为直角坐标原点)的面积为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为± . (Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,求△POA面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求abcd的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

同步练习册答案