精英家教网 > 高中数学 > 题目详情
已知|m|<1,直线l1:y=mx+1,l2:x=-my+1,l1与l2相交于点P,l1交y轴于点A,l2交x轴于点B
(1)证明:l1⊥l2
(2)用m表示四边形OAPB的面积S,并求出S的最大值;
(3)设S=f(m),求U=S+
1S
的单调区间.
分析:(1)根据斜率之积等于-1,可得故l1⊥l2
(2)根据四边形OAPB为圆内接四边形,由四边形OAPB的面积S等于两个直角三角形OAB和APB的面积之和,
三角形OAB的面积易求,把l1与l2相的方程联立方程组可解得点P坐标,再求出点P到 AB 的距离,APB的面积
可求.
(3)由函数的导数大于0,可得此函数在定义域内是增函数.
解答:解:(1)由题意知,m≠0,l1与l2的斜率分别为 m,
1
-m
,斜率之积等于-1,故l1⊥l2
(2)由题意知,A(0,1),B(1,0),AB=
2
,四边形OAPB为圆内接四边形(有一组对角互补且都是直角),
把l1与l2相的方程联立方程组可解得点P(
1-m
1+m2
1+m
1+m2
),AB 的方程为x+y-1=0,
点P到 AB 的距离为
|
1-m
1+m2
+
1+m
1+m2
-1|
2
=
1-m2
2
(1+m2)

 由四边形OAPB的面积S等于两个直角三角形OAB和APB的面积之和,
∴S=
1
2
×1×1+
1
2
×
2
×
1-m2
2
(1+m2)
=
1
2
+
1-m2
2(1+m2)
=
1
1+m2

故 m=0 时,S有最大值为 1.
(3)U=S+
1
S
=
1
1+m2
+(1+m2),|m|<1,U的导数U′=
-2m
1+m2
+2m=2m(1-
1
1+m2
)>0,
∴U 在其定义域(-1,1)内是单调增函数.
点评:本题考查两直线垂直的条件,用分割法求四边形的面积,利用导数判断函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>1,直线l:x-my-
m
2
2
=0,椭圆C:
x2
m2
+y2
=1,F1,F2分别为椭圆C的左右焦点.设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G,H,若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(I)当直线l过右焦点F2时,求直线l的方程;
(II)当直线l与椭圆C相离、相交时,求m的取值范围;
(III)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都外国语学校高三(上)11月月考数学试卷(解析版) 题型:解答题

已知m>1,直线l:x-my-=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

同步练习册答案