精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$(n≥3,且n∈N*),则a2015=(  )
A.$\frac{1}{2}$B.1C.2D.2-2015

分析 由数列{an}满足a1=1,a2=2,${a_n}=\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$(n≥3,且n∈N*),可得:an+6=an.即可得出.

解答 解:∵数列{an}满足a1=1,a2=2,${a_n}=\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$(n≥3,且n∈N*),
∴a3=$\frac{{a}_{2}}{{a}_{1}}$=2,同理可得a4=1,a5=$\frac{1}{2}$,a6=$\frac{1}{2}$,a7=1,a8=2,…,
∴an+6=an
∴a2015=a6×335+5=a5=$\frac{1}{2}$.
故选:A.

点评 本题考查了递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x2-1(2<x<3)的反函数为(  )
A.f-1(x)=$\sqrt{x-1}$(3<x<8)B.f-1(x)=$\sqrt{x+1}$(3<x<8)C.f-1(x)=$\sqrt{x-1}$(4<x<9)D.f-1(x)=$\sqrt{x+1}$(4<x<9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=f(x-1)是奇函数,且f(2)=1,则f(-4)=(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)在平面直角坐标系xOy中,设直线y=$\sqrt{3}$x+2m和圆x2+y2=n2相切,其中m,n∈N*,且0<|m-n|≤1,若函数f(x)=mx+1-n的零点x0∈(k-2,k-1),k∈Z,求整数k的值.
(2)设a,b∈R且不为零,若直线ax+by-1=0与x轴相交于点A,与y轴相交于B,且l与圆x2+y2=k2相交所得弦的长为2,O为坐标原点,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=2$\sqrt{3}$,b=2$\sqrt{2}$,B=45°,则A等于(  )
A.30°或150°B.60°C.60°或120°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若a=7,b=8,c=9,则$\frac{sin2A}{sinC}$=$\frac{28}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=log2x-$\frac{1}{2}$x+5的零点个数为(  )
A.0B.1C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=lgx2,那么,f(-10)=(  )
A.-1B.-2C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+1|+ax(x∈R).
(1)证明:当a>1时,f(x)在R上是增函数;
(2)若函数f(x)存在两个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案