精英家教网 > 高中数学 > 题目详情
椭圆E:=1(a>b>0)离心率为,且过P().
(1)求椭圆E的方程;
(2)已知直线l过点M(-,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若=,且λ+μ=,求抛物线C的标准方程.

【答案】分析:(1)利用离心率计算公式、点在椭圆上及a,b,c的关系可得,解出即可;
(2)设抛物线C的方程为y=ax2(a>0),直线与抛物线C切点为.利用导数的几何意义可得切线的斜率,进而得到切线方程,即可得到切点N,进一步简化切线方程,把直线l的方程与椭圆的方程联立得到根与系数的关系,再利用已知向量关系式=,且λ+μ=,即可得到a及抛物线C的标准方程.
解答:解.(1)由题意可得,解得
∴椭圆E的方程为
(2)设抛物线C的方程为y=ax2(a>0),
直线与抛物线C切点为
∵y′=2ax,∴切线l的斜率为2ax
∴切线方程为
∵直线l过点M,∴
∵点N在第二象限,∴x<0,
解得x=-1.∴N(-1,a).
∴直线l的方程为y=-2ax-a.
代入椭圆方程并整理得:代入椭圆方程整理为(1+16a2)x2+16a2x+4a2-8=0.
设A(x1,y1),B(x2,y2).



∴λ+μ===
,∴,又a>0,解得
∴抛物线C的标准方程为,其标准方程为
点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为根与系数的关系、直线与抛物线相切问题、导数的几何意义、向量的运算等基础知识与基本技能,考查了推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知A、B、C是椭圆E:=1(a>b>0)上的三点,其中点  

A的坐标为(2,0),BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.

(1)求点C的坐标及椭圆E的方程;

(2)若椭圆E上存在两点P、Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量是否共线,并给出证明.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省鸡西市密山一中高三(下)第五次月考数学试卷(解析版) 题型:解答题

已知点F椭圆E:+=1(a>b>0)的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且△ABM是边长为2的正三角形;又椭圆E上的P、Q两点关于直线l:y=x+n对称.
(I)求椭圆E的方程;
(II)当直线l过点(0,)时,求直线PQ的方程;
(III)若点C是直线l上一点,且∠PCQ=,求△PCQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年天津市十二所重点中学高三联考数学试卷2(理科)(解析版) 题型:解答题

已知点F椭圆E:+=1(a>b>0)的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且△ABM是边长为2的正三角形;又椭圆E上的P、Q两点关于直线l:y=x+n对称.
(I)求椭圆E的方程;
(II)当直线l过点(0,)时,求直线PQ的方程;
(III)若点C是直线l上一点,且∠PCQ=,求△PCQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省镇平一高高三下学期第三次周考文科数学试卷 题型:解答题

已知椭圆E=1(ab>o)的离心率e=,且经过点(,1),O为坐标原点。

  (Ⅰ)求椭圆E的标准方程;

 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为PQ,当∠PMQ=60°时,求直线PQ的方程.

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年宁夏高三第六次月考文科数学试卷 题型:解答题

已知椭圆E=1(ab>o)的离心率e=,且经过点(,1),O为坐标原点。

  (Ⅰ)求椭圆E的标准方程;

 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线

x=-4在x轴上方的一点,过M作圆O的两条切线,

切点分别为PQ,当∠PMQ=60°时,求直线PQ的方程.

 

 

 

查看答案和解析>>

同步练习册答案