精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=sin2x+sin(2x+$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)求f(x)的单调区间;
(3)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最值.

分析 由条件利用两角和差的正弦公式化简函数f(x)的解析式,再利用正弦函数的周期性、单调性、定义域和值域求得结果.

解答 解:函数f(x)=sin2x+sin(2x+$\frac{π}{3}$)=sin2x+sin2xcos$\frac{π}{3}$+cos2xsin$\frac{π}{3}$=$\frac{3}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x
=$\sqrt{3}$sin(2x+$\frac{π}{6}$).
(1)故f(x)的最小正周期为$\frac{2π}{2}$=π,
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,可得函数的增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,可得函数的增区间为[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
(3)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],则2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
故当2x+$\frac{π}{6}$=-$\frac{π}{6}$时,函数f(x)取得最小值为-$\frac{\sqrt{3}}{2}$,当 2x+$\frac{π}{6}$=$\frac{π}{2}$时,函数f(x)取得最大值为$\sqrt{3}$.

点评 本题主要考查两角和差的正弦公式,正弦函数的周期性、单调性、定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值.
(1)121${\;}^{\frac{1}{2}}$    
(2)($\frac{125}{27}$)${\;}^{-\frac{2}{3}}$     
(3)2$\sqrt{3}$×$\root{3}{3}$×$\root{6}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点的集合M={(x,y)|xy>0}是指(  )
A.第一象限内点的集合B.第三象限内点的集合
C.第一、三象限内点的集合D.第二、四象限内点的集合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:①若两个空间向量相等,则它们的起点相同,终点也相同;②若空间向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;③在正方体BCD-A1B1C1D1中,必有$\overrightarrow{AC}$=$\overrightarrow{{A}_{1}{C}_{1}}$;④若空间向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$满足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;⑤空间中任意两个单位向量必相等.其中正确的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的单调递减区间:
(1)y=3cos(2x+$\frac{π}{3}$);
(2)y=2sin($\frac{π}{3}$-3x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一半径为4m的水轮,其圆心距离水面2m,若水轮每分钟转动10圈,则在水轮转一周的过程中,水轮上某一点在水中的时间为2秒.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,四边形ABCD,CEFG,CGFD都是全等的菱形,HE与CG相交于点M,则下列关系不一定成立的是(  )
A.|$\overrightarrow{AB}$|=|$\overrightarrow{EF}$|B.$\overrightarrow{AB}$与$\overrightarrow{FH}$共线C.$\overrightarrow{BD}$与$\overrightarrow{EH}$共线D.$\overrightarrow{DC}$与$\overrightarrow{EC}$共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知关于x的不等式ax2+x<0的解集中的整数恰有2个,则(  )
A.$\frac{1}{3}$<a≤$\frac{1}{2}$B.$\frac{1}{3}$≤a<$\frac{1}{2}$
C.$\frac{1}{3}$<a≤$\frac{1}{2}$或-$\frac{1}{2}$≤a<-$\frac{1}{3}$D.$\frac{1}{3}$≤a<$\frac{1}{2}$或-$\frac{1}{2}$<a≤-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.太阳光线与地面的夹角为30°,一个球在地面的影子是椭圆,那么椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案