精英家教网 > 高中数学 > 题目详情
已知一个长方体共顶点的三个面的面积分别是2,3,6,则该长方体的外接球的表面积
 
考点:球的体积和表面积,球内接多面体
专题:计算题,空间位置关系与距离
分析:根据题意可得长方体的三条棱长,再结合题意与有关知识可得外接球的直径就是长方体的对角线,求出长方体的对角线,即可得到球的直径,进而根据球的表面积公式求出球的表面积.
解答: 解:因为长方体相邻的三个面的面积分别是2,3,6,
∴长方体的一个顶点上的三条棱长分别是3,2,1,
又因为长方体的8个顶点都在同一个球面上,
所以长方体的对角线就是圆的直径,
因为长方体的体对角线的长是:
1+4+9
=
14

球的半径是:
14
2

这个球的表面积:4π•(
14
2
)2
=14π
故答案为14π.
点评:解决此类问题的关键是熟练掌握常用几何体的结构特征,以及球的内接多面体的有关知识,球的表面积公式,而解决此题的关键是知道球的直径与长方体的体对角线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A,直线a,平面α,以下叙述正确的是(  )
A、A∈a,a∈α⇒A∈α
B、A∈a,a?α⇒A∉α
C、A∉a,a?α⇒A∉α
D、A∈a,a?α⇒A?α

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点(2,
π
3
)到直线ρcos(θ+
π
6
)=1的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的内角A,B,C的对边,且C=2A,cosA=
3
4

(1)求c:a的值;
(2)求证:a,b,c成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B、命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C、“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥(ax)min在x∈[1,2]上恒成立”
D、命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

设α为第四象限的角,若
sin3α
sinα
=
13
5
,则tanα=(  )
A、-
1
3
B、-
2
3
C、-
6
2
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2
3

(1)求双曲线C的标准方程;
(2)求(1)中双曲线的右焦点到渐近线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
8
+y2
=1的左、右焦点分别为F1、F2,点P在椭圆上,则|PF1|•|PF2|的最大值是(  )
A、8
B、2
2
C、10
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M={1,t},N={t2-t+1},若N⊆M,则t的值为
 

查看答案和解析>>

同步练习册答案