精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.
=1
B.
=1
C.
=1
D.
=1

【答案】B
【解析】解:设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,
则双曲线为等轴双曲线,即a=b,
双曲线的渐近线方程为y=± x=±x,
则经过F和P(0,4)两点的直线的斜率k= =
=1,c=4,则a=b=2
∴双曲线的标准方程:
故选B.
【考点精析】通过灵活运用斜率的计算公式,掌握给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k=y2-y1/x2-x1即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)图象向左平移 个单位后,得到函数的图象关于点( ,0)对称,则函数g(x)=cos(x+φ)在[﹣ ]上的最小值是( )
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,侧面底面.

(1)求证:平面平面

(2)若,且二面角等于,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a、b满足:a>0,b>0.
(1)若x∈R,求证:|x+a|+|x﹣b|≥2
(2)若a+b=1,求证: + + ≥12.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,双曲线 =1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,焦距为2.(14分)
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,该直线l:y=k1x﹣ 交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2 , 且看k1k2= ,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20 , 接下来的两项是20 , 21 , 再接下来的三项是20 , 21 , 22 , 依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.440
B.330
C.220
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是

1)求n的值;

2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b

为事件A,求事件A的概率;

在区间内任取2个实数,求事件恒成立的概率.

查看答案和解析>>

同步练习册答案