精英家教网 > 高中数学 > 题目详情

向量数学公式,函数数学公式
(1)指出函数f(x)的最小正周期及单调递增区间;
(2)当数学公式时,函数f(x)的最大值为数学公式,求函数f(x)的最小值并求此时的x的值.

解:(1)∵向量
又∵函数

∴f(x)的最小正周期是
其单调递增区间是
(2)由
∴当时,

∴当
时,

分析:(1)由已知中向量,函数.由向量数量积公式,及辅助角公式,我们将函数f(x)的解析式化为正弦型函数的形式,进而根据正弦型函数的性质,求出函数f(x)的最小正周期及单调递增区间;
(2)已知中函数的解析式,结合正弦型函数的图象和性质,结合已知中当时,函数f(x)的最大值为,我们易求出构造关于参数t的方程,解方程求出t值,即可得到函数f(x)的最小值并求此时的x的值.
点评:本题考查的知识点是平面向量的数量积,辅助角公式,正弦函数的定义域、值域、最小正周期、函数的单调性、函数的最值,是向量和三角函数的综合应用,求出正弦型函数的解析式,熟练掌握正弦型函数的图象和性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向
OA
=(x1,f(x1)),
OB
=(x2,  f(x2))
OM
=(x,y),当实数λ满足x=λ x1+(1-λ) x2时,记向量
ON
OA
+(1-λ)
OB
.定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指“|
MN
|≤
k恒成立”,其中k是一个确定的正数.
(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)求证:函数g(x)=lnx在区间[em,em+1](m∈R)上可在标准k=
1
8
下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|
MN
|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:①A、B、N三点共线;②“函数y=5x2在[0,1]上可在标准1下线性近似”; ③“函数y=5x2在[0,1]上可在标准
5
4
下线性近似”. 其中所有正确结论的序号为(  )
A、①、②B、②、③
C、①、③D、①、②、③

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域在[x1,x2]的函数y=f(x)的图象为C,C的端点分别为A、B,M是C上的任一点,向量
OA
=(x1y1),
OB
=(x2y2),
OM
=(x,y)
,若x=λx1+(1-λ)x2,记向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准K下线性近似”是指|
MN
|≤K
恒成立,其中K是一个正数.
(1)证明:0≤λ≤1(2);
(3)请你给出一个标准K的范围,使得[0,1]上的函数y=x2(4)与y=x3(5)中有且只有一个可在标准K下线性近似.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳三模)设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|
MN
|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为
a
=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准
5
4
下线性近似”.
其中所有正确结论的番号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源:2013届甘肃省兰州一中高三上学期期末考试理科数学试卷(带解析) 题型:解答题

(本小题满分12分)
设定义在区间上的函数的图象为上的任意一点,为坐标原点,设向量=,当实数λ满足x="λ" x1+(1-λ) x2时,记向量+(1-λ).定义“函数在区间上可在标准下线性近似”是指 “恒成立”,其中是一个确定的正数.
(1)求证:三点共线;
(2)设函数在区间[0,1]上可在标准下线性近似,求的取值范围;
(3)求证:函数在区间上可在标准下线性近似.
(参考数据:=2.718,

查看答案和解析>>

同步练习册答案