精英家教网 > 高中数学 > 题目详情
下列说法:
①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
②命题“函数y=sin(?x+
π
3
)
的最小正周期是π,则?=2”是真命题;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是假命题;
④f(x)是(-∞,0)∪(0,+∞)上的偶函数,x>0时f(x)的解析式是f(x)=x3
则x<0时f(x)的解析式是f(x)=-x3
其中正确的说法是(  )
A.①③④B.①②③C.①②④D.②③④
①特称命题的否定是全称命题,所以“?x∈R,2x>3”的否定是“?x∈R,2x≤3”,所以①正确.
②根据三角函数的周期公式可得
|ω|
,解得ω=±2,所以②错误.
③因为否命题和逆命题互为等价命题,所以判断原命题的逆命题的真假即可.
命题的逆命题为“f′(x0)=0,则函数f(x)在x=x0处有极值”,所以逆命题错误,即原命题的否命题是假命题,所以③正确.
④因为x<0,所以-x>0,所以f(-x)=(-x)3=-x3,因为函数f(x)是偶函数,所以f(-x)=-x3=f(x),即f(x)=-x3.所以④正确.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0+∞)上的奇函数x>0的解析式是f(x)=2x,则x<0的解析式为f(x)=-2-x
其中正确的说法个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π,
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的说法是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
②命题“函数y=sin(?x+
π
3
)
的最小正周期是π,则?=2”是真命题;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是假命题;
④f(x)是(-∞,0)∪(0,+∞)上的偶函数,x>0时f(x)的解析式是f(x)=x3
则x<0时f(x)的解析式是f(x)=-x3
其中正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π3
)
的最小正周期是π;
③“在△ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
④“m=-1”是“直线mx+(2m-1)y+1=0和直线3x+my+2=0垂直”的充要条件;
其中正确的说法是
①②③
①②③
(只填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②设随机变量ξ~N(0,σ2),且P(ξ<-1)=
1
4
,则P(0<ξ<1)=
1
4

③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④函数f(x)为R上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的是
①②④
①②④

查看答案和解析>>

同步练习册答案