精英家教网 > 高中数学 > 题目详情
(2012•广州一模)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
分析:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3,根据前3个小组的频率之比为1:2:3和所求频率和为1建立方程组,解之即可求出第二组频率,然后根据样本容量等于
频数
频率
进行求解即可;
(2)由(1)可得,一个报考学生体重超过60公斤的概率为p=p3+(0.037+0.013)×5=
5
8
,所以x服从二项分布p(x=k)=
C
k
3
(
5
8
)k(
3
8
)3-k
,从而求出x的分布列,最后利用数学期望公式进行求解.
解答:解:(1)设报考飞行员的人数为n,前三小组的频率分别为p1,p2,p3
则由条件可得:
p2=2p1
p3=3p1
p1+p2+p3+(0.037+0.013)×5=1

解得p1=0.125,p2=0.25,p3=0.375…(4分)
又因为p2=0.25=
12
n
,故n=48…(6分)
(2)由(1)可得,一个报考学生体重超过60公斤的概率为p=p3+(0.037+0.013)×5=
5
8
…(8分)
所以x服从二项分布,p(x=k)=
C
k
3
(
5
8
)k(
3
8
)3-k

∴随机变量x的分布列为:
x 0 1 2 3
p
27
512
135
512
225
512
125
512
Ex=0×
27
512
+1×
135
512
+2×
225
512
+3×
125
512
=
15
8
…(12分)
(或:Ex=3×
5
8
=
15
8
点评:本题主要考察了频率分布直方图,以及离散型随机变量的概率分布和数学期望,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a表示.已知甲、乙两个小组的数学成绩的平均分相同.
(1)求a的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)设函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)证明:f(x)≥g1(x);
(2)当x>0时,比较f(x)与gn(x)的大小,并说明理由;
(3)证明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知
e1
=(
3
,-1)
e2
=(
1
2
3
2
)
,若
a
=
e1
+(t2-3)•
e2
b
=-k•
e1
+t•
e2
,若
a
b
,则实数k和t满足的一个关系式是
t3-3t-4k=0
t3-3t-4k=0
k+t2
t
的最小值为
-
7
4
-
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知平面向量
a
=(1,3)
b
=(-3,x)
,且
a
b
,则
a
b
=(  )

查看答案和解析>>

同步练习册答案