精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,椭圆的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点AB分别在椭圆上,若,则直线AB的斜率k为( .

A.1B.-1C.D.

【答案】C

【解析】

先由已知求出椭圆的标准方程,设点AB的坐标分别为,由可知OAB三点共线,由椭圆的标准方程可知AB两点不在y轴上,因此设AB的方程为,将分别与椭圆的方程联立消去y,用k分别表示,由可得含k的一元二次方程,解出k,即得。

由题得,椭圆的长轴为4,离心率椭圆的长轴为短轴,且两个椭圆的离心率相同,椭圆的焦点在y轴上,,椭圆的方程为.AB坐标分别为三点共线,且点AB不在y轴上,设AB的方程为,代入,将代入得,,解得.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:cm),经统计,其高度均在区间[1931]内,将其按[1921)[2123)[2325)[2527)[2729)[2931]分成6组,制成如图所示的频率分布直方图.其中高度为27cm及以上的树苗为优质树苗.

1)求图中a的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表)

2)已知所抽取的这120棵树苗来自于AB两个试验区,部分数据如下列联表:将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与AB两个试验区有关系,并说明理由.

参考数据:

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax3﹣(3a2x28x+12a+7gx)=lnx,记hx)=min{fx),gx)},若hx)至少有三个零点,则实数a的取值范围是( )

A.(﹣∞,B.,+∞)C.[D.[]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )

A. 是否倾向选择生育二胎与户籍有关

B. 是否倾向选择生育二胎与性别有关

C. 倾向选择生育二胎的人群中,男性人数与女性人数相同

D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论在区间上的单调性;

2)若时,,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若曲线在点处的切线与直线平行,求满足的关系;

(2)当时,讨论的单调性;

(3)当时,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某摄影协会在201910月举办了主题庆祖国70华诞——我们都是追梦人摄影图片展.通过平常人的镜头,记录了国强民富的幸福生活,向祖国母亲70岁的生日献了一份厚礼.摄影协会收到了来自社会各界的大量作品,从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

1)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);

2)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平均数近似为样本方差.

i)利用该正态分布,求

附:,若,则.

ii)摄影协会从年龄在的作者中,按照分层抽样的方法,抽出了7人参加讲述图片背后的故事座谈会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)用表示中的最大值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4 — 4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

1)分别写出直线的普通方程与曲线的直角坐标方程;

2)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

同步练习册答案