精英家教网 > 高中数学 > 题目详情
精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.
分析:(1)利用线面垂直的判定定理证明CM⊥平面ABDE;
(2)利用V=
1
3
SABDE•CM
,可求几何体的体积.
解答:(1)证明:∵DB⊥平面ABC,∴CM⊥BD.
又∵M是AB的中点,∴CM⊥AB,
∵AB∩BD=B,∴CM⊥平面ABDE;
(2)解:∵AC⊥BC,AC=BC=2,M是AB的中点,∴AB=2
2
,CM=
2

∴V=
1
3
SABDE•CM
=
1
3
(1+2)×2
2
×
2
=4
点评:本题考查线面垂直,考查几何体体积的计算,考查学生空间想象能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD、ADEF、ABGF均为全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求证:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,平行四边形ABCD的顶点都在以AC为直径的圆O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F分别为BP,CP的中点.
(I)证明:EF∥平面ADP;
(II)求三棱锥M-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.

查看答案和解析>>

同步练习册答案