精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式的焦点到渐近线的距离为数学公式,且双曲线右支上一点P到右焦点的距离的最小值为2,则双曲线的离心率为


  1. A.
    数学公式
  2. B.
    3
  3. C.
    2
  4. D.
    数学公式
C
分析:根据双曲线性质可知双曲线右支上一点P到右焦点的距离的最小时,p在右顶点上,进而求得c-a的值,然后利用点到直线的距离表示出焦点到渐近线的距离,求得a和c的关系式,最后两关系式联立求得a和c,则离心率可得.
解答:依题意可知双曲线右支上一点P到右焦点的距离的最小时,P在右顶点上,即c-a=2①
∵焦点到渐近线的距离为
=2,②
①②联立求得a=2,c=4
∴e==2
故选C.
点评:本题主要考查了双曲线的简单性质.考查了学生数形结合的思想,解析几何知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e的值为(  )
A、
2
B、
5
3
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为2
3
,且双曲线右支上一点P到右焦点的距离的最小值为2,则双曲线的离心率为(  )
A、
3
B、3
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A、①③B、②③C、①④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
b2
=1 (b>0)
的渐近线方程为y=±
5
3
x,则此双曲线的焦点到渐近线的距离为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题
①若两直线平行,则两直线斜率相等.
②动点M至两定点A、B的距离之比为常数λ(λ>0且λ≠1).则动点M的轨迹是圆.
③若椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率  e=
2
2
,则  b=c  (c为半焦距)

④双曲线
x2
a2
-
y2
b2
=1(a>b>0)
的焦点到渐近线的距离为b.
⑤已知抛物线y2=2px上两点A(x1,y1),B(x2,y2),且OA⊥OB(O为原点),则y1y2=-p2
其中正确命题的序号是
②③④
②③④
.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案