【题目】已知等差数列{an}中,a1=1,a3=﹣3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=﹣35,求k的值.
【答案】
(1)解:设等差数列{an}的公差为d,则an=a1+(n﹣1)d
由a1=1,a3=﹣3,可得1+2d=﹣3,解得d=﹣2,
从而,an=1+(n﹣1)×(﹣2)=3﹣2n;
(2)解:由(1)可知an=3﹣2n,
所以Sn= =2n﹣n2,
进而由Sk=﹣35,可得2k﹣k2=﹣35,
即k2﹣2k﹣35=0,解得k=7或k=﹣5,
又k∈N+,故k=7为所求.
【解析】(1)设出等差数列的公差为d,然后根据首项为1和第3项等于﹣3,利用等差数列的通项公式即可得到关于d的方程,求出方程的解即可得到公差d的值,根据首项和公差写出数列的通项公式即可;(2)根据等差数列的通项公式,由首项和公差表示出等差数列的前k项和的公式,当其等于﹣35得到关于k的方程,求出方程的解即可得到k的值,根据k为正整数得到满足题意的k的值.
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:或,以及对等差数列的前n项和公式的理解,了解前n项和公式:.
科目:高中数学 来源: 题型:
【题目】某工厂对新研发的一种产品进行试销,得到如下数据表:
(1)根据上表求出回归直线方程,并预测当单价定为8.3元时的销量;
(2)如果该工厂每件产品的成本为5.5元,利用所求的回归方程,要使得利润最大,单价应该定为多少?
附:线性回归方程中斜率和截距最小二乘估计计算公式:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.
(Ⅰ)求男生甲闯关失败的概率;
(Ⅱ)设表示四人冲关小组闯关成功的人数,求随机变量的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点作直线分别交轴的正半轴于两点.
(Ⅰ)当取最小值时,求出最小值及直线的方程;
(Ⅱ)当取最小值时,求出最小值及直线的方程;
(Ⅲ)当取最小值时,求出最小值及直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然对数的底数,e=2.71828…
(1)当a=0时,解不等式f(x)<2;
(2)求函数f(x)的单调增区间;
(3)设a≥ ,讨论关于x的方程f(f(x))= 的解的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下2-组随机数:
907 966 191 925 271 932 812 458
569 683 431 257 393 027 556 488
730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com